scispace - formally typeset
Search or ask a question
Author

Peter J. Wilson

Bio: Peter J. Wilson is an academic researcher from University of Queensland. The author has contributed to research in topics: Pancreatic cancer & DNA repair. The author has an hindex of 5, co-authored 5 publications receiving 4383 citations.

Papers
More filters
Journal ArticleDOI
Peter Bailey1, David K. Chang2, Katia Nones3, Katia Nones1, Amber L. Johns4, Ann-Marie Patch1, Ann-Marie Patch3, Marie-Claude Gingras5, David Miller1, David Miller4, Angelika N. Christ1, Timothy J. C. Bruxner1, Michael C.J. Quinn3, Michael C.J. Quinn1, Craig Nourse2, Craig Nourse1, Murtaugh Lc6, Ivon Harliwong1, Senel Idrisoglu1, Suzanne Manning1, Ehsan Nourbakhsh1, Shivangi Wani1, Shivangi Wani3, J. Lynn Fink1, Oliver Holmes1, Oliver Holmes3, Chin4, Matthew J. Anderson1, Stephen H. Kazakoff1, Stephen H. Kazakoff3, Conrad Leonard3, Conrad Leonard1, Felicity Newell1, Nicola Waddell1, Scott Wood1, Scott Wood3, Qinying Xu3, Qinying Xu1, Peter J. Wilson1, Nicole Cloonan3, Nicole Cloonan1, Karin S. Kassahn7, Karin S. Kassahn8, Karin S. Kassahn1, Darrin Taylor1, Kelly Quek1, Alan J. Robertson1, Lorena Pantano9, Laura Mincarelli2, Luis Navarro Sanchez2, Lisa Evers2, Jianmin Wu4, Mark Pinese4, Mark J. Cowley4, Jones2, Jones4, Emily K. Colvin4, Adnan Nagrial4, Emily S. Humphrey4, Lorraine A. Chantrill10, Lorraine A. Chantrill4, Amanda Mawson4, Jeremy L. Humphris4, Angela Chou4, Angela Chou11, Marina Pajic12, Marina Pajic4, Christopher J. Scarlett4, Christopher J. Scarlett13, Andreia V. Pinho4, Marc Giry-Laterriere4, Ilse Rooman4, Jaswinder S. Samra14, James G. Kench4, James G. Kench15, James G. Kench16, Jessica A. Lovell4, Neil D. Merrett12, Christopher W. Toon4, Krishna Epari17, Nam Q. Nguyen18, Andrew Barbour19, Nikolajs Zeps20, Kim Moran-Jones2, Nigel B. Jamieson2, Janet Graham21, Janet Graham2, Fraser Duthie22, Karin A. Oien22, Karin A. Oien4, Hair J22, Robert Grützmann23, Anirban Maitra24, Christine A. Iacobuzio-Donahue25, Christopher L. Wolfgang26, Richard A. Morgan26, Rita T. Lawlor, Corbo, Claudio Bassi, Borislav Rusev, Paola Capelli27, Roberto Salvia, Giampaolo Tortora, Debabrata Mukhopadhyay28, Gloria M. Petersen28, Munzy Dm5, William E. Fisher5, Saadia A. Karim, Eshleman26, Ralph H. Hruban26, Christian Pilarsky23, Jennifer P. Morton, Owen J. Sansom2, Aldo Scarpa27, Elizabeth A. Musgrove2, Ulla-Maja Bailey2, Oliver Hofmann2, Oliver Hofmann9, R. L. Sutherland4, David A. Wheeler5, Anthony J. Gill4, Anthony J. Gill16, Richard A. Gibbs5, John V. Pearson1, John V. Pearson3, Andrew V. Biankin, Sean M. Grimmond1, Sean M. Grimmond2, Sean M. Grimmond29 
03 Mar 2016-Nature
TL;DR: Detailed genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing.
Abstract: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

2,443 citations

Journal ArticleDOI
Nicola Waddell1, Marina Pajic2, Ann-Marie Patch3, David K. Chang2, Karin S. Kassahn3, Peter Bailey3, Amber L. Johns2, David Miller3, Katia Nones3, Kelly Quek3, Michael C.J. Quinn3, Alan J. Robertson3, Muhammad Zaki Hidayatullah Fadlullah3, Timothy J. C. Bruxner3, Angelika N. Christ3, Ivon Harliwong3, Senel Idrisoglu3, Suzanne Manning3, Craig Nourse3, Ehsan Nourbakhsh3, Shivangi Wani3, Peter J. Wilson3, Emma Markham3, Nicole Cloonan1, Matthew J. Anderson3, J. Lynn Fink3, Oliver Holmes3, Stephen H. Kazakoff3, Conrad Leonard3, Felicity Newell3, Barsha Poudel3, Sarah Song3, Darrin Taylor3, Nick Waddell3, Scott Wood3, Qinying Xu3, Jianmin Wu2, Mark Pinese2, Mark J. Cowley2, Hong C. Lee2, Marc D. Jones2, Adnan Nagrial2, Jeremy L. Humphris2, Lorraine A. Chantrill2, Venessa T. Chin2, Angela Steinmann2, Amanda Mawson2, Emily S. Humphrey2, Emily K. Colvin2, Angela Chou2, Christopher J. Scarlett2, Andreia V. Pinho2, Marc Giry-Laterriere2, Ilse Rooman2, Jaswinder S. Samra4, James G. Kench2, Jessica A. Pettitt2, Neil D. Merrett5, Christopher W. Toon2, Krishna Epari6, Nam Q. Nguyen7, Andrew Barbour8, Nikolajs Zeps9, Nigel B. Jamieson10, Janet Graham11, Simone P. Niclou, Rolf Bjerkvig12, Robert Grützmann13, Daniela Aust13, Ralph H. Hruban14, Anirban Maitra15, Christine A. Iacobuzio-Donahue16, Christopher L. Wolfgang14, Richard A. Morgan14, Rita T. Lawlor17, Vincenzo Corbo, Claudio Bassi, Massimo Falconi, Giuseppe Zamboni17, Giampaolo Tortora, Margaret A. Tempero18, Anthony J. Gill2, James R. Eshleman14, Christian Pilarsky13, Aldo Scarpa17, Elizabeth A. Musgrove19, John V. Pearson1, Andrew V. Biankin2, Sean M. Grimmond3 
26 Feb 2015-Nature
TL;DR: Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency, and 4 of 5 individuals with these measures of defective DNA maintenance responded to platinum therapy.
Abstract: Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

2,035 citations

Journal ArticleDOI
Aldo Scarpa, David K. Chang, Katia Nones1, Katia Nones2, Vincenzo Corbo, Ann-Marie Patch2, Ann-Marie Patch1, Peter Bailey3, Peter Bailey2, Rita T. Lawlor, Amber L. Johns4, David Miller2, Andrea Mafficini, Borislav Rusev, Maria Scardoni, Davide Antonello, Stefano Barbi, Katarzyna O. Sikora, Sara Cingarlini, Caterina Vicentini, Skye McKay4, Michael C.J. Quinn2, Michael C.J. Quinn1, Timothy J. C. Bruxner2, Angelika N. Christ2, Ivon Harliwong2, Senel Idrisoglu2, Suzanne McLean2, Craig Nourse2, Craig Nourse3, Ehsan Nourbakhsh2, Peter J. Wilson2, Matthew J. Anderson2, J. Lynn Fink2, Felicity Newell1, Felicity Newell2, Nick Waddell2, Oliver Holmes2, Oliver Holmes1, Stephen H. Kazakoff1, Stephen H. Kazakoff2, Conrad Leonard1, Conrad Leonard2, Scott Wood1, Scott Wood2, Qinying Xu2, Qinying Xu1, Shivashankar H. Nagaraj2, Eliana Amato, Irene Dalai, Samantha Bersani, Ivana Cataldo, Angelo Paolo Dei Tos5, Paola Capelli, Maria Vittoria Davì, Luca Landoni, Anna Malpaga, Marco Miotto, Vicki L. J. Whitehall2, Vicki L. J. Whitehall1, Barbara A. Leggett1, Barbara A. Leggett6, Barbara A. Leggett2, Janelle L. Harris1, Jonathan M. Harris7, Marc D. Jones3, Jeremy L. Humphris4, Lorraine A. Chantrill4, Venessa T. Chin4, Adnan Nagrial4, Marina Pajic4, Christopher J. Scarlett8, Christopher J. Scarlett4, Andreia V. Pinho4, Ilse Rooman4, Christopher W. Toon4, Jianmin Wu4, Jianmin Wu9, Mark Pinese4, Mark J. Cowley4, Andrew Barbour10, Amanda Mawson4, Emily S. Humphrey4, Emily K. Colvin4, Angela Chou4, Angela Chou11, Jessica A. Lovell4, Nigel B. Jamieson12, Nigel B. Jamieson3, Fraser Duthie3, Marie-Claude Gingras13, Marie-Claude Gingras14, William E. Fisher14, Rebecca A. Dagg15, Loretta Lau15, Michael Lee16, Hilda A. Pickett16, Roger R. Reddel16, Jaswinder S. Samra17, Jaswinder S. Samra18, James G. Kench17, James G. Kench4, James G. Kench19, Neil D. Merrett20, Neil D. Merrett17, Krishna Epari21, Nam Q. Nguyen22, Nikolajs Zeps23, Nikolajs Zeps24, Massimo Falconi, Michele Simbolo, Giovanni Butturini, George Van Buren14, Stefano Partelli, Matteo Fassan, Kum Kum Khanna1, Anthony J. Gill4, Anthony J. Gill17, David A. Wheeler13, Richard A. Gibbs13, Elizabeth A. Musgrove3, Claudio Bassi, Giampaolo Tortora, Paolo Pederzoli, John V. Pearson1, John V. Pearson2, Nicola Waddell2, Nicola Waddell1, Andrew V. Biankin, Sean M. Grimmond25 
02 Mar 2017-Nature
TL;DR: In this paper, the authors performed whole-genome sequencing of 102 primary pancreatic neuroendocrine tumours and defined the genomic events that characterize their pathogenesis, including a deficiency in G:C,>T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase.
Abstract: The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.

637 citations

Journal ArticleDOI
TL;DR: It is concluded that L. borgpetersenii is evolving toward dependence on a strict host-to-host transmission cycle, similar to L. interrogans, a species with minimal genetic decay and that survives extended passage in aquatic environments encountering a mammalian host.
Abstract: Leptospirosis is one of the most common zoonotic diseases in the world, resulting in high morbidity and mortality in humans and affecting global livestock production. Most infections are caused by either Leptospira borgpetersenii or Leptospira interrogans, bacteria that vary in their distribution in nature and rely on different modes of transmission. We report the complete genomic sequences of two strains of L. borgpetersenii serovar Hardjo that have distinct phenotypes and virulence. These two strains have nearly identical genetic content, with subtle frameshift and point mutations being a common form of genetic variation. Starkly limited regions of synteny are shared between the large chromosomes of L. borgpetersenii and L. interrogans, probably the result of frequent recombination events between insertion sequences. The L. borgpetersenii genome is ≈700 kb smaller and has a lower coding density than L. interrogans, indicating it is decaying through a process of insertion sequence-mediated genome reduction. Loss of gene function is not random but is centered on impairment of environmental sensing and metabolite transport and utilization. These features distinguish L. borgpetersenii from L. interrogans, a species with minimal genetic decay and that survives extended passage in aquatic environments encountering a mammalian host. We conclude that L. borgpetersenii is evolving toward dependence on a strict host-to-host transmission cycle.

341 citations

Journal ArticleDOI
Jeremy L. Humphris1, Ann-Marie Patch2, Ann-Marie Patch3, Katia Nones2, Katia Nones3, Peter Bailey4, Peter Bailey2, Amber L. Johns1, Skye McKay1, David K. Chang, David Miller2, David Miller1, Marina Pajic5, Marina Pajic1, Karin S. Kassahn2, Karin S. Kassahn6, Michael C.J. Quinn3, Michael C.J. Quinn2, Timothy J. C. Bruxner2, Angelika N. Christ2, Ivon Harliwong2, Senel Idrisoglu2, Suzanne Manning2, Craig Nourse5, Craig Nourse2, Ehsan Nourbakhsh2, Andrew Stone1, Peter J. Wilson2, Matthew J. Anderson2, J. Lynn Fink2, Oliver Holmes3, Oliver Holmes2, Stephen H. Kazakoff3, Stephen H. Kazakoff2, Conrad Leonard2, Conrad Leonard3, Felicity Newell2, Felicity Newell3, Nick Waddell2, Scott Wood2, Scott Wood3, Ronald S Mead1, Qinying Xu2, Qinying Xu3, Jianmin Wu1, Mark Pinese1, Mark J. Cowley5, Mark J. Cowley1, Marc D. Jones4, Marc D. Jones1, Adnan Nagrial1, Venessa T. Chin1, Lorraine A. Chantrill1, Lorraine A. Chantrill7, Amanda Mawson1, Angela Chou8, Angela Chou1, Christopher J. Scarlett9, Christopher J. Scarlett1, Andreia V. Pinho1, Ilse Rooman1, Marc Giry-Laterriere1, Jaswinder S. Samra10, Jaswinder S. Samra11, James G. Kench10, James G. Kench1, James G. Kench12, Neil D. Merrett10, Christopher W. Toon1, Krishna Epari13, Nam Q. Nguyen14, Andrew Barbour15, Nikolajs Zeps16, Nigel B. Jamieson4, Nigel B. Jamieson17, Colin J. McKay17, C. Ross Carter17, Euan J. Dickson17, Janet Graham4, Janet Graham18, Fraser Duthie19, Karin A. Oien19, Jane Hair, Jennifer P. Morton4, Owen J. Sansom4, Robert Grützmann, Ralph H. Hruban20, Anirban Maitra20, Christine A. Iacobuzio-Donahue20, Richard D. Schulick20, Christopher L. Wolfgang20, Richard A. Morgan20, Rita T. Lawlor21, Borislav Rusev21, Vincenzo Corbo21, Roberto Salvia21, Ivana Cataldo21, Giampaolo Tortora, Margaret A. Tempero22, Oliver Hofmann4, James R. Eshleman20, Christian Pilarsky23, Aldo Scarpa21, Elizabeth A. Musgrove4, Elizabeth A. Musgrove1, Elizabeth A. Musgrove5, Anthony J. Gill1, Anthony J. Gill11, Anthony J. Gill10, John V. Pearson3, John V. Pearson2, Sean M. Grimmond2, Sean M. Grimmond24, Nicola Waddell3, Nicola Waddell2, Andrew V. Biankin 
TL;DR: Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.

171 citations


Cited by
More filters
Journal ArticleDOI
17 Apr 2018-Immunity
TL;DR: An extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA identifies six immune subtypes that encompass multiple cancer types and are hypothesized to define immune response patterns impacting prognosis.

3,246 citations

Journal ArticleDOI
Peter Bailey1, David K. Chang2, Katia Nones1, Katia Nones3, Amber L. Johns4, Ann-Marie Patch3, Ann-Marie Patch1, Marie-Claude Gingras5, David Miller1, David Miller4, Angelika N. Christ1, Timothy J. C. Bruxner1, Michael C.J. Quinn1, Michael C.J. Quinn3, Craig Nourse1, Craig Nourse2, Murtaugh Lc6, Ivon Harliwong1, Senel Idrisoglu1, Suzanne Manning1, Ehsan Nourbakhsh1, Shivangi Wani3, Shivangi Wani1, J. Lynn Fink1, Oliver Holmes3, Oliver Holmes1, Chin4, Matthew J. Anderson1, Stephen H. Kazakoff3, Stephen H. Kazakoff1, Conrad Leonard3, Conrad Leonard1, Felicity Newell1, Nicola Waddell1, Scott Wood3, Scott Wood1, Qinying Xu1, Qinying Xu3, Peter J. Wilson1, Nicole Cloonan1, Nicole Cloonan3, Karin S. Kassahn7, Karin S. Kassahn8, Karin S. Kassahn1, Darrin Taylor1, Kelly Quek1, Alan J. Robertson1, Lorena Pantano9, Laura Mincarelli2, Luis Navarro Sanchez2, Lisa Evers2, Jianmin Wu4, Mark Pinese4, Mark J. Cowley4, Jones4, Jones2, Emily K. Colvin4, Adnan Nagrial4, Emily S. Humphrey4, Lorraine A. Chantrill10, Lorraine A. Chantrill4, Amanda Mawson4, Jeremy L. Humphris4, Angela Chou4, Angela Chou11, Marina Pajic4, Marina Pajic12, Christopher J. Scarlett4, Christopher J. Scarlett13, Andreia V. Pinho4, Marc Giry-Laterriere4, Ilse Rooman4, Jaswinder S. Samra14, James G. Kench15, James G. Kench4, James G. Kench16, Jessica A. Lovell4, Neil D. Merrett12, Christopher W. Toon4, Krishna Epari17, Nam Q. Nguyen18, Andrew Barbour19, Nikolajs Zeps20, Kim Moran-Jones2, Nigel B. Jamieson2, Janet Graham2, Janet Graham21, Fraser Duthie22, Karin A. Oien4, Karin A. Oien22, Hair J22, Robert Grützmann23, Anirban Maitra24, Christine A. Iacobuzio-Donahue25, Christopher L. Wolfgang26, Richard A. Morgan26, Rita T. Lawlor, Corbo, Claudio Bassi, Borislav Rusev, Paola Capelli27, Roberto Salvia, Giampaolo Tortora, Debabrata Mukhopadhyay28, Gloria M. Petersen28, Munzy Dm5, William E. Fisher5, Saadia A. Karim, Eshleman26, Ralph H. Hruban26, Christian Pilarsky23, Jennifer P. Morton, Owen J. Sansom2, Aldo Scarpa27, Elizabeth A. Musgrove2, Ulla-Maja Bailey2, Oliver Hofmann9, Oliver Hofmann2, R. L. Sutherland4, David A. Wheeler5, Anthony J. Gill16, Anthony J. Gill4, Richard A. Gibbs5, John V. Pearson3, John V. Pearson1, Andrew V. Biankin, Sean M. Grimmond29, Sean M. Grimmond1, Sean M. Grimmond2 
03 Mar 2016-Nature
TL;DR: Detailed genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing.
Abstract: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

2,443 citations

Journal ArticleDOI
TL;DR: Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds, potentially leading to tissue damage or disease.
Abstract: Inflammation is a biological response of the immune system that can be triggered by a variety of factors, including pathogens, damaged cells and toxic compounds. These factors may induce acute and/or chronic inflammatory responses in the heart, pancreas, liver, kidney, lung, brain, intestinal tract and reproductive system, potentially leading to tissue damage or disease. Both infectious and non-infectious agents and cell damage activate inflammatory cells and trigger inflammatory signaling pathways, most commonly the NF-κB, MAPK, and JAK-STAT pathways. Here, we review inflammatory responses within organs, focusing on the etiology of inflammation, inflammatory response mechanisms, resolution of inflammation, and organ-specific inflammatory responses.

2,197 citations

Journal ArticleDOI
TL;DR: The recent development of defined mutagenesis systems for Leptospira heralds the potential for gaining a much improved understanding of pathogenesis in leptospirosis, and shows promise for the development of vaccines based on defined protective antigens.

1,764 citations

01 Jan 2015

1,720 citations