scispace - formally typeset
Search or ask a question
Author

Peter K.K. Louie

Bio: Peter K.K. Louie is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Air quality index & Environmental monitoring. The author has an hindex of 3, co-authored 4 publications receiving 275 citations. Previous affiliations of Peter K.K. Louie include Hong Kong Environmental Protection Department.

Papers
More filters
Journal ArticleDOI
TL;DR: Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment, and it can be argued that with a significant future expansion of monitoring networks, including indoor environments, there may be less need for wearable or portable sensors/monitors to assess personal exposure.

418 citations

01 Jul 2018
TL;DR: In this article, the authors conducted a comprehensive literature search including both the scientific and grey literature, and concluded that there is no clear answer to the question, due to a lack of: sensor/monitor manufacturers' quantitative specifications of performance, consensus regarding recommended end-use and associated minimal performance targets of these technologies, and the ability of the prospective users to formulate the requirements for their applications, or conditions of the intended use.
Abstract: Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment. With their cost of up to three orders of magnitude lower than standard/reference instruments, many avenues for applications have opened up. In particular, broader participation in air quality discussion and utilisation of information on air pollution by communities has become possible. However, many questions have been also asked about the actual benefits of these technologies. To address this issue, we conducted a comprehensive literature search including both the scientific and grey literature. We focused upon two questions: (1) Are these technologies fit for the various purposes envisaged? and (2) How far have these technologies and their applications progressed to provide answers and solutions? Regarding the former, we concluded that there is no clear answer to the question, due to a lack of: sensor/monitor manufacturers' quantitative specifications of performance, consensus regarding recommended end-use and associated minimal performance targets of these technologies, and the ability of the prospective users to formulate the requirements for their applications, or conditions of the intended use. Numerous studies have assessed and reported sensor/monitor performance under a range of specific conditions, and in many cases the performance was concluded to be satisfactory. The specific use cases for sensors/monitors included outdoor in a stationary mode, outdoor in a mobile mode, indoor environments and personal monitoring. Under certain conditions of application, project goals, and monitoring environments, some sensors/monitors were fit for a specific purpose. Based on analysis of 17 large projects, which reached applied outcome stage, and typically conducted by consortia of organizations, we observed that a sizable fraction of them (~ 30%) were commercial and/or crowd-funded. This fact by itself signals a paradigm change in air quality monitoring, which previously had been primarily implemented by government organizations. An additional paradigm-shift indicator is the growing use of machine learning or other advanced data processing approaches to improve sensor/monitor agreement with reference monitors. There is still some way to go in enhancing application of the technologies for source apportionment, which is of particular necessity and urgency in developing countries. Also, there has been somewhat less progress in wide-scale monitoring of personal exposures. However, it can be argued that with a significant future expansion of monitoring networks, including indoor environments, there may be less need for wearable or portable sensors/monitors to assess personal exposure. Traditional personal monitoring would still be valuable where spatial variability of pollutants of interest is at a finer resolution than the monitoring network can resolve.

138 citations

Journal ArticleDOI
TL;DR: The results show that the emission control measures resulting in NO2, SO2, and PM reductions over the past decade have effectively reduced the AR over Hong Kong, even though these control measures may have partially contributed to an increase in O3 concentrations.

33 citations

Journal ArticleDOI
TL;DR: It is demonstrated that although the NOx-titration effect triggered an increase in O3, the combined health effects of two pollutants tended to improve in most regions of China under a VOC-limited regime.

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The outcomes of theoretical and empirical findings indicate that both linear and non-linear term for green growth reduces CO2 emissions, which supports the theoretical notion that green growth sustains environment quality.

349 citations

Journal ArticleDOI
TL;DR: A three-phase air pollution monitoring system analogous to Google traffic or the navigation application of Google Maps is proposed, and air quality data can be used to predict future air quality index (AQI) levels.
Abstract: Internet of Things (IoT) is a worldwide system of “smart devices” that can sense and connect with their surroundings and interact with users and other systems. Global air pollution is one of the major concerns of our era. Existing monitoring systems have inferior precision, low sensitivity, and require laboratory analysis. Therefore, improved monitoring systems are needed. To overcome the problems of existing systems, we propose a three-phase air pollution monitoring system. An IoT kit was prepared using gas sensors, Arduino integrated development environment (IDE), and a Wi-Fi module. This kit can be physically placed in various cities to monitoring air pollution. The gas sensors gather data from air and forward the data to the Arduino IDE. The Arduino IDE transmits the data to the cloud via the Wi-Fi module. We also developed an Android application termed IoT-Mobair , so that users can access relevant air quality data from the cloud. If a user is traveling to a destination, the pollution level of the entire route is predicted, and a warning is displayed if the pollution level is too high. The proposed system is analogous to Google traffic or the navigation application of Google Maps. Furthermore, air quality data can be used to predict future air quality index (AQI) levels.

214 citations

Journal ArticleDOI
TL;DR: Low-cost PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised airborne PM concentrations.
Abstract: Exposure to ambient particulate matter (PM) air pollution is a leading risk factor for morbidity and mortality, associated with up to 8.9 million deaths/year worldwide. Measurement of personal exposure to PM is hindered by poor spatial resolution of monitoring networks. Low-cost PM sensors may improve monitoring resolution in a cost-effective manner but there are doubts regarding data reliability. PM sensor boxes were constructed using four low-cost PM micro-sensor models. Three boxes were deployed at each of two schools in Southampton, UK, for around one year and sensor performance was analysed. Comparison of sensor readings with a nearby background station showed moderate to good correlation (0.61 < r < 0.88, p < 0.0001), but indicated that low-cost sensor performance varies with different PM sources and background concentrations, and to a lesser extent relative humidity and temperature. This may have implications for their potential use in different locations. Data also indicates that these sensors can track short-lived events of pollution, especially in conjunction with wind data. We conclude that, with appropriate consideration of potential confounding factors, low-cost PM sensors may be suitable for PM monitoring where reference-standard equipment is not available or feasible, and that they may be useful in studying spatially localised airborne PM concentrations.

152 citations

Journal ArticleDOI
TL;DR: Air quality impacts from wildfires have been dramatic in recent years, with millions of people exposed to elevated and sometimes hazardous fine particulate matter (PM 2.5 ) concentrations for exten...
Abstract: Air quality impacts from wildfires have been dramatic in recent years, with millions of people exposed to elevated and sometimes hazardous fine particulate matter (PM 2.5 ) concentrations for exten...

145 citations

01 Feb 2015
TL;DR: In this article, the authors illustrate the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

136 citations