scispace - formally typeset
Search or ask a question
Author

Peter Lorenz

Bio: Peter Lorenz is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Frequency domain & Robustness (computer science). The author has an hindex of 1, co-authored 2 publications receiving 3 citations.

Papers
More filters
Posted Content
TL;DR: In this paper, the authors investigate the spatial and frequency domain properties of AutoAttack and propose an alternative defense by detecting adversarial attacks during inference instead of hardening a network, rejecting manipulated inputs.
Abstract: Recently, adversarial attacks on image classification networks by the AutoAttack (Croce and Hein, 2020b) framework have drawn a lot of attention. While AutoAttack has shown a very high attack success rate, most defense approaches are focusing on network hardening and robustness enhancements, like adversarial training. This way, the currently best-reported method can withstand about 66% of adversarial examples on CIFAR10. In this paper, we investigate the spatial and frequency domain properties of AutoAttack and propose an alternative defense. Instead of hardening a network, we detect adversarial attacks during inference, rejecting manipulated inputs. Based on a rather simple and fast analysis in the frequency domain, we introduce two different detection algorithms. First, a black box detector that only operates on the input images and achieves a detection accuracy of 100% on the AutoAttack CIFAR10 benchmark and 99.3% on ImageNet, for epsilon = 8/255 in both cases. Second, a whitebox detector using an analysis of CNN feature maps, leading to a detection rate of also 100% and 98.7% on the same benchmarks.

2 citations

Proceedings Article
18 Jun 2021
TL;DR: In this paper, the authors investigate the spatial and frequency domain properties of AutoAttack and propose an alternative defense by detecting adversarial attacks during inference instead of hardening a network, rejecting manipulated inputs.
Abstract: Recently, adversarial attacks on image classification networks by the AutoAttack (Croce and Hein, 2020b) framework have drawn a lot of attention. While AutoAttack has shown a very high attack success rate, most defense approaches are focusing on network hardening and robustness enhancements, like adversarial training. This way, the currently best-reported method can withstand about 66% of adversarial examples on CIFAR10. In this paper, we investigate the spatial and frequency domain properties of AutoAttack and propose an alternative defense. Instead of hardening a network, we detect adversarial attacks during inference, rejecting manipulated inputs. Based on a rather simple and fast analysis in the frequency domain, we introduce two different detection algorithms. First, a black box detector that only operates on the input images and achieves a detection accuracy of 100% on the AutoAttack CIFAR10 benchmark and 99.3% on ImageNet, for epsilon = 8/255 in both cases. Second, a whitebox detector using an analysis of CNN feature maps, leading to a detection rate of also 100% and 98.7% on the same benchmarks.

1 citations


Cited by
More filters
Proceedings ArticleDOI
20 Oct 2021
TL;DR: In this article, the authors used the magnitude and phase of the Fourier Spectrum and the entropy of the image to defend against adversarial examples (AE) by training an adversarial detector and denoising the adversarial effect.
Abstract: Adversarial example(AE) aims at fooling a Convolution Neural Network by introducing small perturbations in the input image. The proposed work uses the magnitude and phase of the Fourier Spectrum and the entropy of the image to defend against AE. We demonstrate the defense in two ways: by training an adversarial detector and denoising the adversarial effect. Experiments were conducted on the low-resolution CIFAR-10 and high-resolution ImageNet datasets. The adversarial detector has 99% accuracy for FGSM and PGD attacks on the CIFAR-10 dataset. However, the detection accuracy falls to 50% for sophisticated DeepFool and Carlini & Wagner attacks on ImageNet. We overcome the limitation by using autoencoder and show that 70% of AEs are correctly classified after denoising.

7 citations

Proceedings ArticleDOI
TL;DR: In this article, the authors used the magnitude and phase of the Fourier Spectrum and the entropy of the image to defend against adversarial examples (AE) by training an adversarial detector and denoising the adversarial effect.
Abstract: Adversarial example (AE) aims at fooling a Convolution Neural Network by introducing small perturbations in the input image.The proposed work uses the magnitude and phase of the Fourier Spectrum and the entropy of the image to defend against AE. We demonstrate the defense in two ways: by training an adversarial detector and denoising the adversarial effect. Experiments were conducted on the low-resolution CIFAR-10 and high-resolution ImageNet datasets. The adversarial detector has 99% accuracy for FGSM and PGD attacks on the CIFAR-10 dataset. However, the detection accuracy falls to 50% for sophisticated DeepFool and Carlini & Wagner attacks on ImageNet. We overcome the limitation by using autoencoder and show that 70% of AEs are correctly classified after denoising.

4 citations

Posted Content
TL;DR: In this article, the authors present a frequency-based understanding of adversarial examples, supported by theoretical and empirical findings, and highlight the glaring disparities between models trained on CIFAR-10 and ImageNet-derived datasets.
Abstract: Adversarial examples pose a unique challenge for deep learning systems. Despite recent advances in both attacks and defenses, there is still a lack of clarity and consensus in the community about the true nature and underlying properties of adversarial examples. A deep understanding of these examples can provide new insights towards the development of more effective attacks and defenses. Driven by the common misconception that adversarial examples are high-frequency noise, we present a frequency-based understanding of adversarial examples, supported by theoretical and empirical findings. Our analysis shows that adversarial examples are neither in high-frequency nor in low-frequency components, but are simply dataset dependent. Particularly, we highlight the glaring disparities between models trained on CIFAR-10 and ImageNet-derived datasets. Utilizing this framework, we analyze many intriguing properties of training robust models with frequency constraints, and propose a frequency-based explanation for the commonly observed accuracy vs. robustness trade-off.