scispace - formally typeset
Search or ask a question
Author

Peter Mcguire

Bio: Peter Mcguire is an academic researcher from Memorial University of Newfoundland. The author has contributed to research in topics: Inverse synthetic aperture radar & Synthetic aperture radar. The author has an hindex of 3, co-authored 3 publications receiving 226 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A two-fold benchmarking scheme for evaluating existing SAR-ATR systems and motivating new system designs is proposed, and a taxonomization methodology for surveying the numerous methods published in the open literature is proposed.
Abstract: The purpose of this paper is to survey and assess the state-of-the-art in automatic target recognition for synthetic aperture radar imagery (SAR-ATR). The aim is not to develop an exhaustive survey of the voluminous literature, but rather to capture in one place the various approaches for implementing the SAR-ATR system. This paper is meant to be as self-contained as possible, and it approaches the SAR-ATR problem from a holistic end-to-end perspective. A brief overview for the breadth of the SAR-ATR challenges is conducted. This is couched in terms of a single-channel SAR, and it is extendable to multi-channel SAR systems. Stages pertinent to the basic SAR-ATR system structure are defined, and the motivations of the requirements and constraints on the system constituents are addressed. For each stage in the SAR-ATR processing chain, a taxonomization methodology for surveying the numerous methods published in the open literature is proposed. Carefully selected works from the literature are presented under the taxa proposed. Novel comparisons, discussions, and comments are pinpointed throughout this paper. A two-fold benchmarking scheme for evaluating existing SAR-ATR systems and motivating new system designs is proposed. The scheme is applied to the works surveyed in this paper. Finally, a discussion is presented in which various interrelated issues, such as standard operating conditions, extended operating conditions, and target-model design, are addressed. This paper is a contribution toward fulfilling an objective of end-to-end SAR-ATR system design.

269 citations

Journal ArticleDOI
TL;DR: A new insight is offered into the relevance of phase in single-channel synthetic aperture radar (SAR) imagery and a new statistical model for the phase is considered, and a set of 15 solely phase-based features are discussed.
Abstract: Traditionally, the phase content in single-channel synthetic aperture radar (SAR) imagery is discarded. This practice is justified by conventional radar resolution theory, which is a theory strictly relevant to point targets. The advent of high-resolution radars permits small targets previously considered to be points to be now treated as extended targets, in which case this theory is not strictly applicable. With this in mind, this paper offers a new insight into the relevance of phase in single-channel SAR imagery. The proposed approach builds on techniques from the fields of complex-valued and directional statistics. In doing so, three main contributions are presented, the first being a novel method for characterizing the phase content. Second, a new statistical model for the phase is considered, and then a set of 15 solely phase-based features are discussed. Our results are demonstrated on real-world SAR datasets for ground-truthed targets. The statistical significance of the information carried in the phase is clearly demonstrated. Furthermore, if applied to a dataset with higher resolution, the proposed techniques are expected to achieve even higher performance.

27 citations

Journal ArticleDOI
TL;DR: A novel procedure for characterizing the nonlinear dynamics in SAR imagery is proposed and three complementary 1-D abstractions for a 2-D SAR chip are introduced, which are found to be resolution dependent.
Abstract: In analyzing single-channel synthetic aperture radar (SAR) imagery, three interrelated questions often arise. First, should one use the detected or the complex-valued image? Second, what is the ‘best’ statistical model? Finally, what constitutes the ‘best’ signal processing methods? This paper addresses these questions from the overarching perspective of the generalized central limit theorem, which underpins nonlinear signal processing. A novel procedure for characterizing the nonlinear dynamics in SAR imagery is proposed. To apply the procedure, three complementary 1-D abstractions for a 2-D SAR chip are introduced. Our analysis is demonstrated on real-world datasets from multiple SAR sensors. The nonlinear dynamics are found to be resolution dependent. As the SAR chip is detected, nonlinear effects are found to be obliterated (i.e., for magnitude-detection) or altered (i.e., for power-detection). In the presence of extended targets (i.e., nonlinear scatterers), it is recommended to use the complex-valued chip rather than the detected one. Furthermore, to exploit the intrinsic nonlinear statistics, it is advised to utilize relevant nonlinear signal analysis techniques.

9 citations


Cited by
More filters
01 Jan 2016
TL;DR: Thank you very much for downloading spotlight synthetic aperture radar signal processing algorithms, maybe you have knowledge that, people have search numerous times for their favorite books, but end up in malicious downloads.
Abstract: Thank you very much for downloading spotlight synthetic aperture radar signal processing algorithms. Maybe you have knowledge that, people have search numerous times for their favorite books like this spotlight synthetic aperture radar signal processing algorithms, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they juggled with some harmful virus inside their laptop.

455 citations

Journal ArticleDOI
TL;DR: This work proposes a transfer learning based method, making knowledge learned from sufficient unlabeled SAR scene images transferrable to labeled SAR target data, and designs an assembled CNN architecture consisting of a classification pathway and a reconstruction pathway, together with a feedback bypass additionally.
Abstract: Tremendous progress has been made in object recognition with deep convolutional neural networks (CNNs), thanks to the availability of large-scale annotated dataset. With the ability of learning highly hierarchical image feature extractors, deep CNNs are also expected to solve the Synthetic Aperture Radar (SAR) target classification problems. However, the limited labeled SAR target data becomes a handicap to train a deep CNN. To solve this problem, we propose a transfer learning based method, making knowledge learned from sufficient unlabeled SAR scene images transferrable to labeled SAR target data. We design an assembled CNN architecture consisting of a classification pathway and a reconstruction pathway, together with a feedback bypass additionally. Instead of training a deep network with limited dataset from scratch, a large number of unlabeled SAR scene images are used to train the reconstruction pathway with stacked convolutional auto-encoders (SCAE) at first. Then, these pre-trained convolutional layers are reused to transfer knowledge to SAR target classification tasks, with feedback bypass introducing the reconstruction loss simultaneously. The experimental results demonstrate that transfer learning leads to a better performance in the case of scarce labeled training data and the additional feedback bypass with reconstruction loss helps to boost the capability of classification pathway.

335 citations

Journal ArticleDOI
TL;DR: Experimental results reveal that object detectors achieve higher mean average precision (mAP) on the test dataset and have high generalization performance on new SAR imagery without land-ocean segmentation, demonstrating the benefits of the dataset the authors constructed.
Abstract: With the launch of space-borne satellites, more synthetic aperture radar (SAR) images are available than ever before, thus making dynamic ship monitoring possible. Object detectors in deep learning achieve top performance, benefitting from a free public dataset. Unfortunately, due to the lack of a large volume of labeled datasets, object detectors for SAR ship detection have developed slowly. To boost the development of object detectors in SAR images, a SAR dataset is constructed. This dataset labeled by SAR experts was created using 102 Chinese Gaofen-3 images and 108 Sentinel-1 images. It consists of 43,819 ship chips of 256 pixels in both range and azimuth. These ships mainly have distinct scales and backgrounds. Moreover, modified state-of-the-art object detectors from natural images are trained and can be used as baselines. Experimental results reveal that object detectors achieve higher mean average precision (mAP) on the test dataset and have high generalization performance on new SAR imagery without land-ocean segmentation, demonstrating the benefits of the dataset we constructed.

272 citations

Journal ArticleDOI
TL;DR: A two-fold benchmarking scheme for evaluating existing SAR-ATR systems and motivating new system designs is proposed, and a taxonomization methodology for surveying the numerous methods published in the open literature is proposed.
Abstract: The purpose of this paper is to survey and assess the state-of-the-art in automatic target recognition for synthetic aperture radar imagery (SAR-ATR). The aim is not to develop an exhaustive survey of the voluminous literature, but rather to capture in one place the various approaches for implementing the SAR-ATR system. This paper is meant to be as self-contained as possible, and it approaches the SAR-ATR problem from a holistic end-to-end perspective. A brief overview for the breadth of the SAR-ATR challenges is conducted. This is couched in terms of a single-channel SAR, and it is extendable to multi-channel SAR systems. Stages pertinent to the basic SAR-ATR system structure are defined, and the motivations of the requirements and constraints on the system constituents are addressed. For each stage in the SAR-ATR processing chain, a taxonomization methodology for surveying the numerous methods published in the open literature is proposed. Carefully selected works from the literature are presented under the taxa proposed. Novel comparisons, discussions, and comments are pinpointed throughout this paper. A two-fold benchmarking scheme for evaluating existing SAR-ATR systems and motivating new system designs is proposed. The scheme is applied to the works surveyed in this paper. Finally, a discussion is presented in which various interrelated issues, such as standard operating conditions, extended operating conditions, and target-model design, are addressed. This paper is a contribution toward fulfilling an objective of end-to-end SAR-ATR system design.

269 citations

Journal ArticleDOI
TL;DR: Experimental results reveal that ship detection and instance segmentation can be well implemented on HRSID, and this work has constructed a High-Resolution SAR Images Dataset (HRSID).
Abstract: With the development of satellite technology, up to date imaging mode of synthetic aperture radar (SAR) satellite can provide higher resolution SAR imageries, which benefits ship detection and instance segmentation. Meanwhile, object detectors based on convolutional neural network (CNN) show high performance on SAR ship detection even without land-ocean segmentation; but with respective shortcomings, such as the relatively small size of SAR images for ship detection, limited SAR training samples, and inappropriate annotations, in existing SAR ship datasets, related research is hampered. To promote the development of CNN based ship detection and instance segmentation, we have constructed a High-Resolution SAR Images Dataset (HRSID). In addition to object detection, instance segmentation can also be implemented on HRSID. As for dataset construction, under the overlapped ratio of 25%, 136 panoramic SAR imageries with ranging resolution from 1m to 5m are cropped to $800 \times 800$ pixels SAR images. To reduce wrong annotation and missing annotation, optical remote sensing imageries are applied to reduce the interferes from harbor constructions. There are 5604 cropped SAR images and 16951 ships in HRSID, and we have divided HRSID into a training set (65% SAR images) and test set (35% SAR images) with the format of Microsoft Common Objects in Context (MS COCO). 8 state-of-the-art detectors are experimented on HRSID to build the baseline; MS COCO evaluation metrics are applicated for comprehensive evaluation. Experimental results reveal that ship detection and instance segmentation can be well implemented on HRSID.

249 citations