scispace - formally typeset

Author

Peter Meer

Bio: Peter Meer is an academic researcher from Rutgers University. The author has contributed to research in topic(s): Image segmentation & Estimator. The author has an hindex of 56, co-authored 148 publication(s) receiving 33447 citation(s). Previous affiliations of Peter Meer include University of Maryland, College Park & Sogang University.
Papers
More filters

Journal ArticleDOI
Dorin Comaniciu1, Peter Meer1Institutions (1)
TL;DR: It is proved the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density.
Abstract: A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

11,014 citations


Journal ArticleDOI
TL;DR: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed, which employs a metric derived from the Bhattacharyya coefficient as similarity measure, and uses the mean shift procedure to perform the optimization.
Abstract: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

4,901 citations


Proceedings ArticleDOI
14 Feb 2000-
TL;DR: The theoretical analysis of the approach shows that it relates to the Bayesian framework while providing a practical, fast and efficient solution for real time tracking of non-rigid objects seen from a moving camera.
Abstract: A new method for real time tracking of non-rigid objects seen from a moving camera is proposed. The central computational module is based on the mean shift iterations and finds the most probable target position in the current frame. The dissimilarity between the target model (its color distribution) and the target candidates is expressed by a metric derived from the Bhattacharyya coefficient. The theoretical analysis of the approach shows that it relates to the Bayesian framework while providing a practical, fast and efficient solution. The capability of the tracker to handle in real time partial occlusions, significant clutter, and target scale variations, is demonstrated for several image sequences.

3,295 citations


Book ChapterDOI
Oncel Tuzel1, Fatih Porikli1, Peter Meer2Institutions (2)
07 May 2006-
TL;DR: A fast method for computation of covariances based on integral images, and the performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariances matrix.
Abstract: We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix.

1,275 citations


Journal Article
Abstract: We describe a new region descriptor and apply it to two problems, object detection and texture classification. The covariance of d-features, e.g., the three-dimensional color vector, the norm of first and second derivatives of intensity with respect to x and y, etc., characterizes a region of interest. We describe a fast method for computation of covariances based on integral images. The idea presented here is more general than the image sums or histograms, which were already published before, and with a series of integral images the covariances are obtained by a few arithmetic operations. Covariance matrices do not lie on Euclidean space, therefore we use a distance metric involving generalized eigenvalues which also follows from the Lie group structure of positive definite matrices. Feature matching is a simple nearest neighbor search under the distance metric and performed extremely rapidly using the integral images. The performance of the covariance features is superior to other methods, as it is shown, and large rotations and illumination changes are also absorbed by the covariance matrix.

1,057 citations


Cited by
More filters

Journal ArticleDOI
Anil K. Jain1, M. N. Murty2, Patrick J. Flynn3Institutions (3)
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

13,346 citations


Journal ArticleDOI
Dorin Comaniciu1, Peter Meer1Institutions (1)
TL;DR: It is proved the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density.
Abstract: A general non-parametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure: the mean shift. For discrete data, we prove the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators; of location is also established. Algorithms for two low-level vision tasks discontinuity-preserving smoothing and image segmentation - are described as applications. In these algorithms, the only user-set parameter is the resolution of the analysis, and either gray-level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

11,014 citations


Journal ArticleDOI
Radhakrishna Achanta1, Appu Shaji1, Kevin Smith2, Aurelien Lucchi  +2 moreInstitutions (2)
TL;DR: A new superpixel algorithm is introduced, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels and is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.
Abstract: Computer vision applications have come to rely increasingly on superpixels in recent years, but it is not always clear what constitutes a good superpixel algorithm. In an effort to understand the benefits and drawbacks of existing methods, we empirically compare five state-of-the-art superpixel algorithms for their ability to adhere to image boundaries, speed, memory efficiency, and their impact on segmentation performance. We then introduce a new superpixel algorithm, simple linear iterative clustering (SLIC), which adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity, SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and more memory efficient, improves segmentation performance, and is straightforward to extend to supervoxel generation.

6,470 citations


Proceedings ArticleDOI
07 Jul 2001-
Abstract: This paper presents a database containing 'ground truth' segmentations produced by humans for images of a wide variety of natural scenes. We define an error measure which quantifies the consistency between segmentations of differing granularities and find that different human segmentations of the same image are highly consistent. Use of this dataset is demonstrated in two applications: (1) evaluating the performance of segmentation algorithms and (2) measuring probability distributions associated with Gestalt grouping factors as well as statistics of image region properties.

6,077 citations


Journal ArticleDOI
TL;DR: An efficient segmentation algorithm is developed based on a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image and it is shown that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties.
Abstract: This paper addresses the problem of segmenting an image into regions. We define a predicate for measuring the evidence for a boundary between two regions using a graph-based representation of the image. We then develop an efficient segmentation algorithm based on this predicate, and show that although this algorithm makes greedy decisions it produces segmentations that satisfy global properties. We apply the algorithm to image segmentation using two different kinds of local neighborhoods in constructing the graph, and illustrate the results with both real and synthetic images. The algorithm runs in time nearly linear in the number of graph edges and is also fast in practice. An important characteristic of the method is its ability to preserve detail in low-variability image regions while ignoring detail in high-variability regions.

5,470 citations


Network Information
Related Authors (5)
Yefeng Zheng

373 papers, 8.9K citations

80% related
Dorin Comaniciu

622 papers, 40.5K citations

80% related
Bogdan Georgescu

261 papers, 9.5K citations

76% related
Visvanathan Ramesh

138 papers, 14.5K citations

74% related
Azriel Rosenfeld

595 papers, 49.4K citations

53% related
Performance
Metrics

Author's H-index: 56

No. of papers from the Author in previous years
YearPapers
20211
20202
20172
20164
20151
20141