scispace - formally typeset
Search or ask a question

Showing papers by "Peter Nugent published in 1999"


Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations


Journal ArticleDOI
TL;DR: In this paper, a grid of photospheric phase atmospheres of Type Ia supernovae (SNe Ia) with metallicities from ten times to one thirtieth the solar metallicity in the C+O layer of the deflagration model, W7, was calculated.
Abstract: We have calculated a grid of photospheric phase atmospheres of Type Ia supernovae (SNe Ia) with metallicities from ten times to one thirtieth the solar metallicity in the C+O layer of the deflagration model, W7. We have modeled the spectra using the multi-purpose NLTE model-atmosphere and spectrum-synthesis code, PHOENIX. We show models for the epochs 7, 10, 15, 20, and 35 days after explosion. When compared to observed spectra obtained at the approximately corresponding epochs these synthetic spectra fit reasonably well. The spectra show variation in the overall level of the UV continuum with lower fluxes for models with higher metallicity in the unburned C+O layer. This is consistent with the classical surface cooling and line blocking effect due to metals in the outer layers of C+O. The UV features also move consistently to the blue with higher metallicity, demonstrating that they are forming at shallower and faster layers in the atmosphere. The potentially most useful effect is the blueward movement of the Si II feature at 6150 Angstrom with increasing C+O layer metallicity. We also demonstrate the more complex effects of metallicity variations by modifying the 54Fe content of the incomplete burning zone in W7 at maximum light. We briefly address some shortcomings of the W7 Finally, we identify that the split in the Ca H+K feature produced in W7 and observed in some SNe Ia is due to a blending effect of Ca II and Si II and does not necessarily represent a complex abundance or ionization effect in Ca II. amodel when compared to observations.

163 citations


Journal ArticleDOI
TL;DR: In this article, two supernovae detected in the Hubble Deep Field (HDF) using the original 1995 December epoch and data from a shorter (63,000 s in F814W) 1997 December visit with {ital HST} are discussed.
Abstract: Two supernovae detected in the Hubble Deep Field (HDF) using the original 1995 December epoch and data from a shorter (63,000 s in F814W) 1997 December visit with {ital HST} are discussed. The supernovae (SNe) are both associated with distinct galaxies at redshifts of 0.95 (spectroscopic) from Cohen et al. and 1.32 (photometric) from the work of Fern{acute a}ndez-Soto, Lanzetta, & Yahil. These redshifts are near, in the case of 0.95, and well beyond, for 1.32, the greatest distance reported previously for SNe. We show that our observations are sensitive to supernovae to z{approx_lt}1.8 in either epoch for an event near peak brightness. Detailed simulations are discussed that quantify the level at which false events from our search phase would start to arise and the completeness of our search as a function of both SN brightness and host galaxy redshift. The number of Type Ia and Type II SNe expected as a function of redshift in the two HDF epochs are discussed in relation to several published predictions and our own detailed calculations. A mean detection frequency of one SN per epoch for the small HDF area is consistent with expectations from current theory. {copyright} {ital {copyright} 1999.} {ital Themore » American Astronomical Society}« less

102 citations


01 May 1999
TL;DR: In this article, a grid of photospheric phase atmospheres of Type Ia supernovae (SNe Ia) with metallicities from ten times to one thirtieth the solar metallicity in the C+O layer of the deflagration model, W7, was calculated.
Abstract: We have calculated a grid of photospheric phase atmospheres of Type Ia supernovae (SNe Ia) with metallicities from ten times to one thirtieth the solar metallicity in the C+O layer of the deflagration model, W7. We have modeled the spectra using the multi-purpose NLTE model-atmosphere and spectrum-synthesis code, PHOENIX. We show models for the epochs 7, 10, 15, 20, and 35 days after explosion. When compared to observed spectra obtained at the approximately corresponding epochs these synthetic spectra fit reasonably well. The spectra show variation in the overall level of the UV continuum with lower fluxes for models with higher metallicity in the unburned C+O layer. This is consistent with the classical surface cooling and line blocking effect due to metals in the outer layers of C+O. The UV features also move consistently to the blue with higher metallicity, demonstrating that they are forming at shallower and faster layers in the atmosphere. The potentially most useful effect is the blueward movement of the Si II feature at 6150 Angstrom with increasing C+O layer metallicity. We also demonstrate the more complex effects of metallicity variations by modifying the 54Fe content of the incomplete burning zone in W7 at maximum light. We briefly address some shortcomings of the W7 Finally, we identify that the split in the Ca H+K feature produced in W7 and observed in some SNe Ia is due to a blending effect of Ca II and Si II and does not necessarily represent a complex abundance or ionization effect in Ca II. amodel when compared to observations.

49 citations