scispace - formally typeset
Search or ask a question
Author

Peter Nugent

Bio: Peter Nugent is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Supernova & Light curve. The author has an hindex of 127, co-authored 754 publications receiving 92988 citations. Previous affiliations of Peter Nugent include Liverpool John Moores University & National Autonomous University of Mexico.
Topics: Supernova, Light curve, Galaxy, Redshift, White dwarf


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used pixel-level simulations that include dust, observing strategy, and multiple supernova subtypes to forecast the rates and properties of gLSNe that ZTF and LSST will find.
Abstract: Supernovae that are strongly gravitationally lensed (gLSNe) by galaxies are powerful probes of astrophysics and cosmology that will be discovered systematically by next-generation wide-field, high-cadence imaging surveys such as the Zwicky Transient Facility (ZTF) and the Large Synoptic Survey Telescope (LSST). Here we use pixel-level simulations that include dust, observing strategy, and multiple supernova subtypes to forecast the rates and properties of gLSNe that ZTF and LSST will find. Applying the resolution-insensitive discovery strategy of Goldstein et al. (2018), we forecast that ZTF (LSST) can discover 0.02 (0.79) 91bg-like, 0.17 (5.92) 91T-like, 1.22 (47.84) Type Ia, 2.76 (88.51) Type IIP, 0.31 (12.78) Type IIL, and 0.36 (15.43) Type Ib/c gLSNe per year. We also forecast that the surveys can discover at least 3.75 (209.32) Type IIn gLSNe per year, for a total of at least 8.60 (380.60) gLSNe per year under fiducial observing strategies. ZTF gLSNe have a median $z_s=0.9$, $z_l=0.35$, $\mu_\mathrm{tot}=30$, $\Delta t_\mathrm{max}= 10$ days, $\min(\theta)= 0.25^{\prime\prime}$, and $N_\mathrm{img} = 4$. LSST gLSNe are less compact and less magnified, with a median $z_s=1.0$, $z_l=0.4$, $\mu_\mathrm{tot}\approx6$, $\Delta t_\mathrm{max} = 25$ days, $\min(\theta)=0.6^{\prime\prime}$, and $N_\mathrm{img} = 2$. As the properties of lensed host galaxy arcs provide critical information for lens mass modeling, we develop a model of the supernova--host galaxy connection and use it to simulate realistic images of the supernova--host--lens systems. We find that the vast majority of gLSN host galaxies will be multiply imaged, enabling detailed constraints on lens models with sufficiently deep high-resolution imaging taken after the supernova has faded. We release the results of our simulations to the public as catalogs at this URL: this http URL.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters, and found that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and moreover, spectral time sequences for SNe?Ia at low and high redshift are indistinguishable.
Abstract: We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters. The spectra are used to determine the redshift and classify the supernova type, essential information if the supernovae are to be used for cosmological studies. Redshifts were derived either from the spectrum of the host galaxy or from the spectrum of the supernova itself. We present evidence that these supernovae are of Type?Ia (SNe Ia) by matching to spectra of nearby supernovae. We find that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and, moreover, the spectral time sequences for SNe?Ia at low and high redshift are indistinguishable. We also show that the expansion velocities measured from blueshifted Ca H and K are consistent with those measured for low-redshift SNe Ia. From these first-level quantitative comparisons we find no evidence for evolution in SN Ia properties between these low- and high-redshift samples. Thus, even though our samples may not be complete, we conclude that there is a population of SNe Ia at high redshift whose spectral properties match those at low redshift.

54 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the Type Ia supernova 2010jn (PTF10ygu) in detail, presenting and evaluating near-ultraviolet (near-UV) spectra from the Hubble Space Telescope and ground-based optical spectra and light curves.
Abstract: Radiative transfer studies of Type Ia supernovae (SNe Ia) hold the promise of constraining both the density profile of the SN ejecta and its stratification by element abundance which, in turn, may discriminate between different explosion mechanisms and progenitor classes. Here we analyse the Type Ia SN 2010jn (PTF10ygu) in detail, presenting and evaluating near-ultraviolet (near-UV) spectra from the Hubble Space Telescope and ground-based optical spectra and light curves. SN 2010jn was discovered by the Palomar Transient Factory (PTF) 15 d before maximum light, allowing us to secure a time series of four near-UV spectra at epochs from −10.5 to +4.8 d relative to B-band maximum. The photospheric near-UV spectra are excellent diagnostics of the iron-group abundances in the outer layers of the ejecta, particularly those at very early times. Using the method of ‘Abundance Tomography’ we derive iron-group abundances in SN 2010jn with a precision better than in any previously studied SN Ia. Optimum fits to the data can be obtained if burned material is present even at high velocities, including significant mass fractions of iron-group elements. This is consistent with the slow decline rate (or high ‘stretch’) of the light curve of SN 2010jn, and consistent with the results of delayed-detonation models. Early-phase UV spectra and detailed time-dependent series of further SNe Ia offer a promising probe of the nature of the SN Ia mechanism.

54 citations

Journal ArticleDOI
TL;DR: In this article, the strength of the absorption features in Type Ia supernova (SN Ia) spectra was measured and used to make a quantitative comparison between the spectra of SNe Ia at low and high redshifts.
Abstract: We develop a method to measure the strength of the absorption features in Type Ia supernova (SN Ia) spectra and use it to make a quantitative comparison between the spectra of Type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 < z < 0.912) SNe Ia observed by the Supernova Cosmology Project . Through measurements of the strengths of these features and of the blueshift of the absorption minimum in Ca II H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z < 0.15). One supernova in our high redshift sample, SN 2002fd at z=0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

53 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of lensing by those objects on the magnitude of SN 1997ff were investigated, and it was shown that due to the spatial configuration of the foreground galaxies, the shear from individual lenses partially cancels out, and total distortion induced on the host galaxy is considerably smaller than that produced by a single lens having the same magnification.
Abstract: With a redshift of z {approx} 1.7, SN 1997ff is the most distant type Ia supernova discovered so far. This SN is close to several bright, z = 0.6-0.9 galaxies, and we consider the effects of lensing by those objects on the magnitude of SN 1997ff. We estimate their velocity dispersions using the Tully-Fisher and Faber-Jackson relations corrected for evolution effects, and calculate, applying the multiple-plane lensing formalism, that SN 1997ff is magnified by 0.34{+-}0.12 mag. Due to the spatial configuration of the foreground galaxies, the shear from individual lenses partially cancels out,and the total distortion induced on the host galaxy is considerably smaller than that produced by a single lens having the same magnification. After correction for lensing, the revised distance to SN 1997ff is m-M = 45.49 {+-} 0.34 mag, which improves the agreement with the {Omega}{sub M} = 0.35, {Omega}{Lambda} = 0.65 cosmology expected from lower-redshift SNe Ia, and is inconsistent at the {approx} 3 sigma confidence level with a uniform gray dust model or a simple evolution model.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

01 Jan 1998
TL;DR: The spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62 were presented in this paper.
Abstract: We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-Z Supernova Search Team (Garnavich et al. 1998; Schmidt et al. 1998) and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (M), the cosmological constant (i.e., the vacuum energy density, �), the deceleration parameter (q0), and the dynamical age of the Universe (t0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (M = 0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., � > 0) and a current acceleration of the expansion (i.e., q0 < 0). With no prior constraint on mass density other than M � 0, the spectroscopically confirmed SNe Ia are statistically consistent with q0 < 0 at the 2.8�

11,197 citations