scispace - formally typeset
Search or ask a question
Author

Peter Plomgaard

Bio: Peter Plomgaard is an academic researcher from University of Copenhagen. The author has contributed to research in topics: Skeletal muscle & Insulin resistance. The author has an hindex of 40, co-authored 118 publications receiving 6764 citations. Previous affiliations of Peter Plomgaard include Rigshospitalet & Copenhagen University Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Low levels of BDNF accompany impaired glucose metabolism, and may be a pathogenetic factor involved not only in dementia and depression, but also in type 2 diabetes, potentially explaining the clustering of these conditions in epidemiological studies.
Abstract: Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer’s disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore explored whether BDNF plays a role in human glucose metabolism. We included (Study 1) 233 humans divided into four groups depending on presence or absence of type 2 diabetes and presence or absence of obesity; and (Study 2) seven healthy volunteers who underwent both a hyperglycaemic and a hyperinsulinaemic–euglycaemic clamp. Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism and diabetes or obesity. In Study 2 an output of BDNF from the human brain was detected at basal conditions. This output was inhibited when blood glucose levels were elevated. In contrast, when plasma insulin was increased while maintaining normal blood glucose, the cerebral output of BDNF was not inhibited, indicating that high levels of glucose, but not insulin, inhibit the output of BDNF from the human brain. Low levels of BDNF accompany impaired glucose metabolism. Decreased BDNF may be a pathogenetic factor involved not only in dementia and depression, but also in type 2 diabetes, potentially explaining the clustering of these conditions in epidemiological studies.

606 citations

Journal ArticleDOI
01 Oct 2005-Diabetes
TL;DR: It is demonstrated that TNF-alpha infusion in healthy humans induces insulin resistance in skeletal muscle, without effect on endogenous glucose production, as estimated by a combined euglycemic insulin clamp and stable isotope tracer method.
Abstract: Most lifestyle-related chronic diseases are characterized by low-grade systemic inflammation and insulin resistance. Excessive tumor necrosis factor-alpha (TNF-alpha) concentrations have been implicated in the development of insulin resistance, but direct evidence in humans is lacking. Here, we demonstrate that TNF-alpha infusion in healthy humans induces insulin resistance in skeletal muscle, without effect on endogenous glucose production, as estimated by a combined euglycemic insulin clamp and stable isotope tracer method. TNF-alpha directly impairs glucose uptake and metabolism by altering insulin signal transduction. TNF-alpha infusion increases phosphorylation of p70 S6 kinase, extracellular signal-regulated kinase-1/2, and c-Jun NH(2)-terminal kinase, concomitant with increased serine and reduced tyrosine phosphorylation of insulin receptor substrate-1. These signaling effects are associated with impaired phosphorylation of Akt substrate 160, the most proximal step identified in the canonical insulin signaling cascade regulating GLUT4 translocation and glucose uptake. Thus, excessive concentrations of TNF-alpha negatively regulate insulin signaling and whole-body glucose uptake in humans. Our results provide a molecular link between low-grade systemic inflammation and the metabolic syndrome.

584 citations

Journal ArticleDOI
TL;DR: It is proposed that IL-6 and other cytokines, which are produced and released by skeletal muscles, exerting their effects in other organs of the body, should be named ‘myokines’.
Abstract: For years the search for the stimulus that initiates and maintains the change of excitability or sensibility of the regulating centers in exercise has been progressing. For lack of more precise knowledge, it has been called the ‘work stimulus’, ‘the work factor’ or ‘the exercise factor’. In other terms, one big challenge for muscle and exercise physiologists has been to determine how muscles signal to central and peripheral organs. Here we discuss the possibility that interleukin-6 (IL-6) could mediate some of the health beneficial effects of exercise. In resting muscle, the IL-6 gene is silent, but it is rapidly activated by contractions. The transcription rate is very fast and the fold changes of IL-6 mRNA is marked. IL-6 is released from working muscles into the circulation in high amounts. The IL-6 production is modulated by the glycogen content in muscles, and IL-6 thus works as an energy sensor. IL-6 exerts its effect on adipose tissue, inducing lipolysis and gene transcription in abdominal subcutaneous fat and increases whole body lipid oxidation. Furthermore, IL-6 inhibits low-grade TNF-α-production and may thereby inhibit TNF-α-induced insulin resistance and atherosclerosis development. We propose that IL-6 and other cytokines, which are produced and released by skeletal muscles, exerting their effects in other organs of the body, should be named ‘myokines’.

493 citations

Journal ArticleDOI
TL;DR: One possible biological cause for the public health problem of Type 2 diabetes has been identified as reduced ambulatory activity for 2 wk in healthy, nonexercising young men significantly reduced peripheral insulin sensitivity, cardiovascular fitness, and lean leg mass.
Abstract: US adults take between ∼2,000 and ∼12,000 steps per day, a wide range of ambulatory activity that at the low range could increase risk for developing chronic metabolic diseases. Dramatic reductions...

288 citations

Journal ArticleDOI
TL;DR: In conclusion, the present study suggests that training twice every second day may be superior to daily training.
Abstract: Low muscle glycogen content has been demonstrated to enhance transcription of a number of genes involved in training adaptation. These results made us speculate that training at a low muscle glycog...

272 citations


Cited by
More filters
Journal ArticleDOI
14 Dec 2006-Nature
TL;DR: Dysfunction of the immune response and metabolic regulation interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease.
Abstract: Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems have been evolutionarily conserved throughout species. As a result, immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interface can be viewed as a central homeostatic mechanism, dysfunction of which can lead to a cluster of chronic metabolic disorders, particularly obesity, type 2 diabetes and cardiovascular disease. Collectively, these diseases constitute the greatest current threat to global human health and welfare.

7,536 citations

Journal ArticleDOI
TL;DR: The pathophysiology seems to be largely attributable to insulin resistance with excessive flux of fatty acids implicated, and a proinflammatory state probably contributes to the metabolic syndrome.

5,810 citations

Journal ArticleDOI
TL;DR: The discovery that obesity itself results in an inflammatory state in metabolic tissues ushered in a research field that examines the inflammatory mechanisms in obesity, and metaflammation is summarized, defined as low-grade, chronic inflammation orchestrated by metabolic cells in response to excess nutrients and energy.
Abstract: The modern rise in obesity and its strong association with insulin resistance and type 2 diabetes have elicited interest in the underlying mechanisms of these pathologies. The discovery that obesity itself results in an inflammatory state in metabolic tissues ushered in a research field that examines the inflammatory mechanisms in obesity. Here, we summarize the unique features of this metabolic inflammatory state, termed metaflammation and defined as low-grade, chronic inflammation orchestrated by metabolic cells in response to excess nutrients and energy. We explore the effects of such inflammation in metabolic tissues including adipose, liver, muscle, pancreas, and brain and its contribution to insulin resistance and metabolic dysfunction. Another area in which many unknowns still exist is the origin or mechanism of initiation of inflammatory signaling in obesity. We discuss signals or triggers to the inflammatory response, including the possibility of endoplasmic reticulum stress as an important contributor to metaflammation. Finally, we examine anti-inflammatory therapies for their potential in the treatment of obesity-related insulin resistance and glucose intolerance.

3,045 citations

Journal ArticleDOI
TL;DR: It is suggested that myokines may be involved in mediating the health-beneficial effects of exercise and that these in particular are involved in the protection against chronic diseases associated with low-grade inflammation such as diabetes and cardiovascular diseases.
Abstract: Regular exercise offers protection against all-cause mortality, primarily by protection against cardiovascular disease and Type 2 diabetes mellitus. The latter disorders have been associated with chronic low-grade systemic inflammation reflected by a two- to threefold elevated level of several cytokines. Adipose tissue contributes to the production of TNF-alpha, which is reflected by elevated levels of soluble TNF-alpha receptors, IL-6, IL-1 receptor antagonist, and C-reactive protein. We suggest that TNF-alpha rather than IL-6 is the driver behind insulin resistance and dyslipidemia and that IL-6 is a marker of the metabolic syndrome, rather than a cause. During exercise, IL-6 is produced by muscle fibers via a TNF-independent pathway. IL-6 stimulates the appearance in the circulation of other anti-inflammatory cytokines such as IL-1ra and IL-10 and inhibits the production of the proinflammatory cytokine TNF-alpha. In addition, IL-6 enhances lipid turnover, stimulating lipolysis as well as fat oxidation. We suggest that regular exercise induces suppression of TNF-alpha and thereby offers protection against TNF-alpha-induced insulin resistance. Recently, IL-6 was introduced as the first myokine, defined as a cytokine that is produced and released by contracting skeletal muscle fibers, exerting its effects in other organs of the body. Here we suggest that myokines may be involved in mediating the health-beneficial effects of exercise and that these in particular are involved in the protection against chronic diseases associated with low-grade inflammation such as diabetes and cardiovascular diseases.

2,659 citations

Journal ArticleDOI
TL;DR: Genetic loci associated with body mass index map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor, which may provide new insights into human body weight regulation.
Abstract: Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.

2,632 citations