scispace - formally typeset
Search or ask a question
Author

Peter Roslev

Bio: Peter Roslev is an academic researcher from Aalborg University. The author has contributed to research in topics: Anaerobic oxidation of methane & Daphnia magna. The author has an hindex of 32, co-authored 65 publications receiving 4000 citations. Previous affiliations of Peter Roslev include Max Planck Society & University of Maine.


Papers
More filters
Journal ArticleDOI
27 Jan 2000-Nature
TL;DR: It is shown here that the activity and growth of such bacteria in the root zone of rice plants are stimulated after fertilization, and the bacteria responsible for this effect are identified using a combination of radioactive fingerprinting and molecular biology techniques.
Abstract: Methane is involved in a number of chemical and physical processes in the Earth's atmosphere, including global warming. Atmospheric methane originates mainly from biogenic sources, such as rice paddies and natural wetlands; the former account for at least 30% of the global annual emission of methane to the atmosphere. As an increase of rice production by 60% is the most appropriate way to sustain the estimated increase of the human population during the next three decades, intensified global fertilizer application will be necessary: but it is known that an increase of the commonly used ammonium-based fertilizers can enhance methane emission from rice agriculture. Approximately 10-30% of the methane produced by methanogens in rice paddies is consumed by methane-oxidizing bacteria associated with the roots of rice; these bacteria are generally thought to be inhibited by ammonium-based fertilizers, as was demonstrated for soils and sediments. In contrast, we show here that the activity and growth of such bacteria in the root zone of rice plants are stimulated after fertilization. Using a combination of radioactive fingerprinting and molecular biology techniques, we identify the bacteria responsible for this effect. We expect that our results will make necessary a re-evaluation of the link between fertilizer use and methane emissions, with effects on global warming studies.

468 citations

Journal ArticleDOI
TL;DR: In this study the soil methane-oxidizing population was characterized by both labelling soil microbiota with14CH4 and analyzing a total soil monooxygenase gene library, and an unknown group of bacteria belonging to the α subclass of the class Proteobacteria was present.
Abstract: The global methane cycle includes both terrestrial and atmospheric processes and may contribute to feedback regulation of the climate. Most oxic soils are a net sink for methane, and these soils consume approximately 20 to 60 Tg of methane per year. The soil sink for atmospheric methane is microbially mediated and sensitive to disturbance. A decrease in the capacity of this sink may have contributed to the approximately 1%. year(-1) increase in the atmospheric methane level in this century. The organisms responsible for methane uptake by soils (the atmospheric methane sink) are not known, and factors that influence the activity of these organisms are poorly understood. In this study the soil methane-oxidizing population was characterized by both labelling soil microbiota with (14)CH(4) and analyzing a total soil monooxygenase gene library. Comparative analyses of [(14)C]phospholipid ester-linked fatty acid profiles performed with representative methane-oxidizing bacteria revealed that the soil sink for atmospheric methane consists of an unknown group of methanotrophic bacteria that exhibit some similarity to type II methanotrophs. An analysis of monooxygenase gene libraries from the same soil samples indicated that an unknown group of bacteria belonging to the alpha subclass of the class Proteobacteria was present; these organisms were only distantly related to extant methane-oxidizing strains. Studies on factors that affect the activity, population dynamics, and contribution to global methane flux of "atmospheric methane oxidizers" should be greatly facilitated by use of biomarkers identified in this study.

266 citations

Journal ArticleDOI
TL;DR: The results suggest that the isotope array can be used in a PCR-independent manner to exploit the high parallelism and discriminatory power of microarrays for the direct identification of microorganisms which consume a specific substrate in the environment.
Abstract: A new microarray method, the isotope array approach, for identifying microorganisms which consume a 14C-labeled substrate within complex microbial communities was developed. Experiments were performed with a small microarray consisting of oligonucleotide probes targeting the 16S rRNA of ammonia-oxidizing bacteria (AOB). Total RNA was extracted from a pure culture of Nitrosomonas eutropha grown in the presence of [14C]bicarbonate. After fluorescence labeling of the RNA and microarray hybridization, scanning of all probe spots for fluorescence and radioactivity revealed that specific signals were obtained and that the incorporation of 14C into rRNA could be detected unambiguously. Subsequently, we were able to demonstrate the suitability of the isotope array approach for monitoring community composition and CO2 fixation activity of AOB in two nitrifying activated-sludge samples which were incubated with [14C]bicarbonate for up to 26 h. AOB community structure in the activated-sludge samples, as predicted by the microarray hybridization pattern, was confirmed by quantitative fluorescence in situ hybridization (FISH) and comparative amoA sequence analyses. CO2 fixation activities of the AOB populations within the complex activated-sludge communities were detectable on the microarray by 14C incorporation and were confirmed independently by combining FISH and microautoradiography. AOB rRNA from activated sludge incubated with radioactive bicarbonate in the presence of allylthiourea as an inhibitor of AOB activity showed no incorporation of 14C and thus was not detectable on the radioactivity scans of the microarray. These results suggest that the isotope array can be used in a PCR-independent manner to exploit the high parallelism and discriminatory power of microarrays for the direct identification of microorganisms which consume a specific substrate in the environment.

241 citations

Journal ArticleDOI
TL;DR: Several controls of microbial PE degradation in activated sludge with biological removal of nitrogen and phosphorus are identified and may be considered to enhance PE degradation to enhance phthalate esters removal in wastewater treatment plants.

238 citations

Journal ArticleDOI
TL;DR: Type I methanotrophs responded fast and with pronounced shifts in population structure and dominated the activity under all four gas mixtures, although apparently more abundant, always present and showing a largely stable population structure.
Abstract: The activity and distribution of methanotrophs in soil depend on the availability of CH4 and O2. Therefore, we investigated the activity and structure of the methanotrophic community in rice field soil under four factorial combinations of high and low CH4 and O2 concentrations. The methanotrophic population structure was resolved by denaturant gradient gel electrophoresis (DGGE) with different PCR primer sets targeting the 16S rRNA gene, and two functional genes coding for key enzymes in methanotrophs, i.e. the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Changes in the biomass of type I and II methanotrophic bacteria in the rice soil were determined by analysis of phospholipid-ester-linked fatty acid (PLFA) biomarkers. The relative contribution of type I and II methanotrophs to the measured methane oxidation activity was determined by labelling of soil samples with 14CH4 followed by analysis of [14C]-PLFAs. CH4 oxidation was repressed by high O2 (20.5%), and enhanced by low O2 (1%). Depending on the CH4 and O2 mixing ratios, different methanotrophic communities developed with a higher diversity at low than at high CH4 concentration as revealed by PCR-DGGE. However, a prevalence of type I or II populations was not detected. The [14C]-PLFA fingerprints, on the other hand, revealed that CH4 oxidation activity was dominated by type I methanotrophs in incubations with low CH4 mixing ratios (1000 p.p.m.v.) and during initiation of CH4 consumption regardless of O2 or CH4 mixing ratio. At high methane mixing ratios (10 000 p.p.m.v.), type I and II methanotrophs contributed equally to the measured CH4 metabolism. Collectively, type I methanotrophs responded fast and with pronounced shifts in population structure and dominated the activity under all four gas mixtures. Type II methanotrophs, on the other hand, although apparently more abundant, always present and showing a largely stable population structure, became active later and contributed to CH4 oxidation activity mainly under high CH4 mixing ratios.

222 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the anaerobic zones of submerged soils by methanogens and methanotrophs are oxidised into CO2 in the aerobic zones of wetland soils and in upland soils.

1,743 citations

Journal ArticleDOI
Ralf Conrad1
TL;DR: It is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level, and different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature.

1,622 citations

Journal ArticleDOI
TL;DR: This Review highlights mechanisms that have evolved in microorganisms to allow them to successfully enter and exit a dormant state, and discusses the implications of microbial seed banks for evolutionary dynamics, population persistence, maintenance of biodiversity, and the stability of ecosystem processes.
Abstract: Dormancy is a bet-hedging strategy used by a wide range of taxa, including microorganisms. It refers to an organism's ability to enter a reversible state of low metabolic activity when faced with unfavourable environmental conditions. Dormant microorganisms generate a seed bank, which comprises individuals that are capable of being resuscitated following environmental change. In this Review, we highlight mechanisms that have evolved in microorganisms to allow them to successfully enter and exit a dormant state, and discuss the implications of microbial seed banks for evolutionary dynamics, population persistence, maintenance of biodiversity, and the stability of ecosystem processes.

1,399 citations

Journal ArticleDOI
TL;DR: The ecology of sponge-microbe associations is examined, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution.
Abstract: Marine sponges often contain diverse and abundant microbial communities, including bacteria, archaea, microalgae, and fungi. In some cases, these microbial associates comprise as much as 40% of the sponge volume and can contribute significantly to host metabolism (e.g., via photosynthesis or nitrogen fixation). We review in detail the diversity of microbes associated with sponges, including extensive 16S rRNA-based phylogenetic analyses which support the previously suggested existence of a sponge-specific microbiota. These analyses provide a suitable vantage point from which to consider the potential evolutionary and ecological ramifications of these widespread, sponge-specific microorganisms. Subsequently, we examine the ecology of sponge-microbe associations, including the establishment and maintenance of these sometimes intimate partnerships, the varied nature of the interactions (ranging from mutualism to host-pathogen relationships), and the broad-scale patterns of symbiont distribution. The ecological and evolutionary importance of sponge-microbe associations is mirrored by their enormous biotechnological potential: marine sponges are among the animal kingdom's most prolific producers of bioactive metabolites, and in at least some cases, the compounds are of microbial rather than sponge origin. We review the status of this important field, outlining the various approaches (e.g., cultivation, cell separation, and metagenomics) which have been employed to access the chemical wealth of sponge-microbe associations.

1,262 citations

Journal ArticleDOI
TL;DR: This chapter reviews recent progress in knowledge of Chemolitho-autotrophic ammonia-oxidizing bacteria of the beta-subclass Proteobacteria, and examines their distribution, diversity, and ecology.
Abstract: ▪ Abstract The eutrophication of many ecosystems in recent decades has led to an increased interest in the ecology of nitrogen transformation. Chemolitho-autotrophic ammonia-oxidizing bacteria are responsible for the rate-limiting step of nitrification in a wide variety of environments, making them important in the global cycling of nitrogen. These organisms are unique in their ability to use the conversion of ammonia to nitrite as their sole energy source. Because of the importance of this functional group of bacteria, understanding of their ecology and physiology has become a subject of intense research over recent years. The monophyletic nature of these bacteria in terrestrial environments has facilitated molecular biological approaches in studying their ecology, and progress in this field has been rapid. The ammonia-oxidizing bacteria of the β-subclass Proteobacteria have become somewhat of a model system within molecular microbial ecology, and this chapter reviews recent progress in our knowledge of ...

1,243 citations