scispace - formally typeset
Search or ask a question
Author

Peter S. Nelson

Bio: Peter S. Nelson is an academic researcher from Fred Hutchinson Cancer Research Center. The author has contributed to research in topics: Prostate cancer & Androgen receptor. The author has an hindex of 96, co-authored 425 publications receiving 47923 citations. Previous affiliations of Peter S. Nelson include University of Washington & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity and established the measurement of tumor-derived mi RNAs in serum or plasma as an important approach for the blood-based detection of human cancer.
Abstract: Improved approaches for the detection of common epithelial malignancies are urgently needed to reduce the worldwide morbidity and mortality caused by cancer. MicroRNAs (miRNAs) are small (≈22 nt) regulatory RNAs that are frequently dysregulated in cancer and have shown promise as tissue-based markers for cancer classification and prognostication. We show here that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. miRNAs originating from human prostate cancer xenografts enter the circulation, are readily measured in plasma, and can robustly distinguish xenografted mice from controls. This concept extends to cancer in humans, where serum levels of miR-141 (a miRNA expressed in prostate cancer) can distinguish patients with prostate cancer from healthy controls. Our results establish the measurement of tumor-derived miRNAs in serum or plasma as an important approach for the blood-based detection of human cancer.

7,296 citations

Journal ArticleDOI
TL;DR: A cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment is suggested.
Abstract: Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

2,923 citations

Journal ArticleDOI
Dan R. Robinson1, Eliezer M. Van Allen2, Eliezer M. Van Allen3, Yi-Mi Wu1, Nikolaus Schultz4, Robert J. Lonigro1, Juan Miguel Mosquera, Bruce Montgomery5, Mary-Ellen Taplin2, Colin C. Pritchard5, Gerhardt Attard6, Gerhardt Attard7, Himisha Beltran, Wassim Abida4, Robert K. Bradley5, Jake Vinson4, Xuhong Cao1, Pankaj Vats1, Lakshmi P. Kunju1, Maha Hussain1, Felix Y. Feng1, Scott A. Tomlins, Kathleen A. Cooney1, David Smith1, Christine Brennan1, Javed Siddiqui1, Rohit Mehra1, Yu Chen8, Yu Chen4, Dana E. Rathkopf8, Dana E. Rathkopf4, Michael J. Morris4, Michael J. Morris8, Stephen B. Solomon4, Jeremy C. Durack4, Victor E. Reuter4, Anuradha Gopalan4, Jianjiong Gao4, Massimo Loda, Rosina T. Lis2, Michaela Bowden2, Michaela Bowden9, Stephen P. Balk10, Glenn C. Gaviola9, Carrie Sougnez3, Manaswi Gupta3, Evan Y. Yu5, Elahe A. Mostaghel5, Heather H. Cheng5, Hyojeong Mulcahy5, Lawrence D. True11, Stephen R. Plymate5, Heidi Dvinge5, Roberta Ferraldeschi6, Roberta Ferraldeschi7, Penny Flohr6, Penny Flohr7, Susana Miranda7, Susana Miranda6, Zafeiris Zafeiriou7, Zafeiris Zafeiriou6, Nina Tunariu6, Nina Tunariu7, Joaquin Mateo7, Joaquin Mateo6, Raquel Perez-Lopez6, Raquel Perez-Lopez7, Francesca Demichelis12, Francesca Demichelis8, Brian D. Robinson, Marc H. Schiffman8, David M. Nanus, Scott T. Tagawa, Alexandros Sigaras8, Kenneth Eng8, Olivier Elemento8, Andrea Sboner8, Elisabeth I. Heath13, Howard I. Scher4, Howard I. Scher8, Kenneth J. Pienta14, Philip W. Kantoff2, Johann S. de Bono7, Johann S. de Bono6, Mark A. Rubin, Peter S. Nelson, Levi A. Garraway2, Levi A. Garraway3, Charles L. Sawyers4, Arul M. Chinnaiyan 
21 May 2015-Cell
TL;DR: This cohort study provides clinically actionable information that could impact treatment decisions for affected individuals and identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, β-catenin, and ZBTB16/PLZF.

2,713 citations

Journal ArticleDOI
Adam Abeshouse1, Jaeil Ahn1, Rehan Akbani1, Adrian Ally1  +308 moreInstitutions (1)
05 Nov 2015-Cell
TL;DR: The Cancer Genome Atlas (TCGA) has been used for a comprehensive molecular analysis of primary prostate carcinomas as discussed by the authors, revealing substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course.

2,109 citations

01 Nov 2015
TL;DR: A comprehensive molecular analysis of 333 primary prostate carcinomas revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1).
Abstract: There is substantial heterogeneity among primary prostate cancers, evident in the spectrum of molecular abnormalities and its variable clinical course. As part of The Cancer Genome Atlas (TCGA), we present a comprehensive molecular analysis of 333 primary prostate carcinomas. Our results revealed a molecular taxonomy in which 74% of these tumors fell into one of seven subtypes defined by specific gene fusions (ERG, ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles showed substantial heterogeneity, including an IDH1 mutant subset with a methylator phenotype. Androgen receptor (AR) activity varied widely and in a subtype-specific manner, with SPOP and FOXA1 mutant tumors having the highest levels of AR-induced transcripts. 25% of the prostate cancers had a presumed actionable lesion in the PI3K or MAPK signaling pathways, and DNA repair genes were inactivated in 19%. Our analysis reveals molecular heterogeneity among primary prostate cancers, as well as potentially actionable molecular defects.

1,794 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrated that SARS-CoV-2 uses the SARS -CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming, and it is shown that the sera from convalescent SARS patients cross-neutralized Sars-2-S-driven entry.

15,362 citations

Journal ArticleDOI
TL;DR: WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment that provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive.
Abstract: WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment. Sequence logos provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive. Each logo consists of stacks of letters, one stack for each position in the sequence. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequency of the corresponding amino or nucleic acid at that position. WebLogo has been enhanced recently with additional features and options, to provide a convenient and highly configurable sequence logo generator. A command line interface and the complete, open WebLogo source code are available for local installation and customization.

10,721 citations

Journal ArticleDOI
TL;DR: The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival and strategies designed to target this population may lead to more effective therapies.
Abstract: Breast cancer is the most common malignancy in United States women, accounting for >40,000 deaths each year. These breast tumors are comprised of phenotypically diverse populations of breast cancer cells. Using a model in which human breast cancer cells were grown in immunocompromised mice, we found that only a minority of breast cancer cells had the ability to form new tumors. We were able to distinguish the tumorigenic (tumor initiating) from the nontumorigenic cancer cells based on cell surface marker expression. We prospectively identified and isolated the tumorigenic cells as CD44+CD24−/lowLineage− in eight of nine patients. As few as 100 cells with this phenotype were able to form tumors in mice, whereas tens of thousands of cells with alternate phenotypes failed to form tumors. The tumorigenic subpopulation could be serially passaged: each time cells within this population generated new tumors containing additional CD44+CD24−/lowLineage− tumorigenic cells as well as the phenotypically diverse mixed populations of nontumorigenic cells present in the initial tumor. The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival. Furthermore, because these cells drive tumor development, strategies designed to target this population may lead to more effective therapies.

10,058 citations

Journal ArticleDOI
03 Feb 2000-Nature
TL;DR: It is shown that there is diversity in gene expression among the tumours of DLBCL patients, apparently reflecting the variation in tumour proliferation rate, host response and differentiation state of the tumour.
Abstract: 12 Pathology and Microbiology, and 13 Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphoma, is clinically heterogeneous: 40% of patients respond well to current therapy and have prolonged survival, whereas the remainder succumb to the disease. We proposed that this variability in natural history reflects unrecognized molecular heterogeneity in the tumours. Using DNA microarrays, we have conducted a systematic characterization of gene expression in B-cell malignancies. Here we show that there is diversity in gene expression among the tumours of DLBCL patients, apparently reflecting the variation in tumour proliferation rate, host response and differentiation state of the tumour. We identified two molecularly distinct forms of DLBCL which had gene expression patterns indicative of different stages of B-cell differentiation. One type expressed genes characteristic of germinal centre B cells ('germinal centre B-like DLBCL'); the second type expressed genes normally induced during in vitro activation of peripheral blood B cells ('activated B-like DLBCL'). Patients with germinal centre B-like DLBCL had a significantly better overall survival than those with activated B-like DLBCL. The molecular classification of tumours on the basis of gene expression can thus identify previously undetected and clinically significant subtypes of cancer.

9,493 citations