scispace - formally typeset
Search or ask a question
Author

Peter Spirtes

Bio: Peter Spirtes is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Causal model & Causal inference. The author has an hindex of 43, co-authored 158 publications receiving 12662 citations. Previous affiliations of Peter Spirtes include Sant'Anna School of Advanced Studies & University of West Florida.


Papers
More filters
Book
01 Jan 1993
TL;DR: The authors axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models.
Abstract: What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences. The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables. The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection. The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993.

4,863 citations

Journal ArticleDOI
TL;DR: An asymptotically correct algorithm whose complexity for fixed graph connectivity increases polynomially in the number of vertices, and may in practice recover sparse graphs with several hundred variables.
Abstract: Previous asymptotically correct algorithms for recovering causal structure from sample probabilities have been limited even in sparse causal graphs to a few variables. We describe an asymptotically...

781 citations

Journal ArticleDOI
TL;DR: A class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models, called maximal ancestral graphs, which lead to a simple parametrization of the corresponding set of distributions in the Gaussian case.
Abstract: This paper introduces a class of graphical independence models that is closed under marginalization and conditioning but that contains all DAG independence models. This class of graphs, called maximal ancestral graphs, has two attractive features: there is at most one edge between each pair of vertices; every missing edge corresponds to an independence relation. These features lead to a simple parameterization of the corresponding set of distributions in the Gaussian case.

632 citations

Posted Content
01 Jan 2001
TL;DR: The authors axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models.
Abstract: What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences. The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables. The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection. The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993.

566 citations

Journal Article
TL;DR: This introduction to the Special Topic on Causality provides a brief introduction to graphical causal modeling, places the articles in a broader context, and describes the differences between causal inference and ordinary machine learning classification and prediction problems.
Abstract: The goal of many sciences is to understand the mechanisms by which variables came to take on the values they have (that is, to find a generative model), and to predict what the values of those variables would be if the naturally occurring mechanisms were subject to outside manipulations. The past 30 years has seen a number of conceptual developments that are partial solutions to the problem of causal inference from observational sample data or a mixture of observational sample and experimental data, particularly in the area of graphical causal modeling. However, in many domains, problems such as the large numbers of variables, small samples sizes, and possible presence of unmeasured causes, remain serious impediments to practical applications of these developments. The articles in the Special Topic on Causality address these and other problems in applying graphical causal modeling algorithms. This introduction to the Special Topic on Causality provides a brief introduction to graphical causal modeling, places the articles in a broader context, and describes the differences between causal inference and ordinary machine learning classification and prediction problems.

503 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
01 Jul 1997
TL;DR: Multi-task Learning (MTL) as mentioned in this paper is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias.
Abstract: Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better. This paper reviews prior work on MTL, presents new evidence that MTL in backprop nets discovers task relatedness without the need of supervisory signals, and presents new results for MTL with k-nearest neighbor and kernel regression. In this paper we demonstrate multitask learning in three domains. We explain how multitask learning works, and show that there are many opportunities for multitask learning in real domains. We present an algorithm and results for multitask learning with case-based methods like k-nearest neighbor and kernel regression, and sketch an algorithm for multitask learning in decision trees. Because multitask learning works, can be applied to many different kinds of domains, and can be used with different learning algorithms, we conjecture there will be many opportunities for its use on real-world problems.

5,181 citations

Journal ArticleDOI
TL;DR: In the past few years, the IS field has seen a substantial increase in the number of submissions and publications using structural equation modeling techniques, which has led some to describe this approach as an example of “a second generation of multivariate analysis”.
Abstract: In the past few years, the IS field has seen a substantial increase in the number of submissions and publications using structural equation modeling (SEM) techniques. Part of the reason may be the increase in software packages to perform such covariance-based (e.g., LISREL, EQS, AMOS, SEPATH, RAMONA, MX, and CALIS) and componentbased (e.g., PLS-PC, PLS-Graph) analysis. Viewed as a coupling of two traditions -an econometric perspective focusing on prediction and a psychometric emphasis that models concepts as latent (unobserved) variables that are indirectly inferred from multiple observed measures (alternately termed as indicators or manifest variables) -SEM has allowed social scientists to perform path analytic modeling with latent variables (Lvs), which in turn has led some to describe this approach as an example of “a second generation of multivariate analysis” (Fornell 1987, p. 408).

4,931 citations

Book
01 Jan 1993
TL;DR: The authors axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models.
Abstract: What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences. The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables. The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection. The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993.

4,863 citations