scispace - formally typeset
Search or ask a question
Author

Peter Strasser

Bio: Peter Strasser is an academic researcher from Technical University of Berlin. The author has contributed to research in topics: Catalysis & Electrocatalyst. The author has an hindex of 100, co-authored 357 publications receiving 37374 citations. Previous affiliations of Peter Strasser include Free University of Berlin & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries.
Abstract: Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.

2,375 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic catalytic activity and durability of carbon supported Ru, Ir, and Pt nanoparticles and corresponding bulk materials for the electrocatalytic oxygen evolution reaction (OER) were examined by surface-sensitive cyclic voltammetry.
Abstract: A comparative investigation was performed to examine the intrinsic catalytic activity and durability of carbon supported Ru, Ir, and Pt nanoparticles and corresponding bulk materials for the electrocatalytic oxygen evolution reaction (OER). The electrochemical surface characteristics of nanoparticles and bulk materials were studied by surface-sensitive cyclic voltammetry. Although basically similar voltammetric features were observed for nanoparticles and bulk materials of each metal, some differences were uncovered highlighting the changes in oxidation chemistry. On the basis of the electrochemical results, we demonstrated that Ru nanoparticles show lower passivation potentials compared to bulk Ru material. Ir nanoparticles completely lost their voltammetric metallic features during the voltage cycling, in contrast to the corresponding bulk material. Finally, Pt nanoparticles show an increased oxophilic nature compared to bulk Pt. With regard to the OER performance, the most pronounced effects of nanosca...

1,885 citations

Journal ArticleDOI
TL;DR: In this article, a review compares and unifies viewpoints on water oxidation from various fields of catalysis research, including thermodynamic efficiency and mechanisms of electrochemical water splitting by metal oxides on electrode surfaces, explaining the recent concept of the potential determining step.
Abstract: Striving for new solar fuels, the water oxidation reaction currently is considered to be a bottleneck, hampering progress in the development of applicable technologies for the conversion of light into storable fuels. This review compares and unifies viewpoints on water oxidation from various fields of catalysis research. The first part deals with the thermodynamic efficiency and mechanisms of electrochemical water splitting by metal oxides on electrode surfaces, explaining the recent concept of the potential-determining step. Subsequently, novel cobalt oxide-based catalysts for heterogeneous (electro)catalysis are discussed. These may share structural and functional properties with surface oxides, multinuclear molecular catalysts and the catalytic manganese–calcium complex of photosynthetic water oxidation. Recent developments in homogeneous water-oxidation catalysis are outlined with a focus on the discovery of mononuclear ruthenium (and non-ruthenium) complexes that efficiently mediate O2 evolution from water. Water oxidation in photosynthesis is the subject of a concise presentation of structure and function of the natural paragon—the manganese–calcium complex in photosystem II—for which ideas concerning redox-potential leveling, proton removal, and OO bond formation mechanisms are discussed. The last part highlights common themes and unifying concepts.

1,450 citations

Journal ArticleDOI
TL;DR: The segregation and leaching mechanisms revealed here highlight the complexity with which shape-selective nanoalloys form and evolve under reactive conditions.
Abstract: Shape-selective monometallic nanocatalysts offer activity benefits based on structural sensitivity and high surface area. In bimetallic nanoalloys with well-defined shape, site-dependent metal surface segregation additionally affects the catalytic activity and stability. However, segregation on shaped alloy nanocatalysts and their atomic-scale evolution is largely unexplored. Exemplified by three octahedral PtxNi1-x alloy nanoparticle electrocatalysts with unique activity for the oxygen reduction reaction at fuel cell cathodes, we reveal an unexpected compositional segregation structure across the {111} facets using aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy. In contrast to theoretical predictions, the pristine PtxNi1-x nano-octahedra feature a Pt-rich frame along their edges and corners, whereas their Ni atoms are preferentially segregated in their {111} facet region. We follow their morphological and compositional evolution in electrochemical environments and correlate this with their exceptional catalytic activity. The octahedra preferentially leach in their facet centres and evolve into 'concave octahedra'. More generally, the segregation and leaching mechanisms revealed here highlight the complexity with which shape-selective nanoalloys form and evolve under reactive conditions.

1,080 citations

Journal ArticleDOI
TL;DR: The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces and lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.
Abstract: A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2–15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity–selectivity–size relations provide novel insights in the CO2 electroreduction r...

1,012 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations

Journal ArticleDOI
07 Jun 2012-Nature
TL;DR: Taking the step towards successful commercialization requires oxygen reduction electrocatalysts that meet exacting performance targets, and these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality.
Abstract: Fuel cells powered by hydrogen from secure and renewable sources are the ideal solution for non-polluting vehicles, and extensive research and development on all aspects of this technology over the past fifteen years has delivered prototype cars with impressive performances. But taking the step towards successful commercialization requires oxygen reduction electrocatalysts--crucial components at the heart of fuel cells--that meet exacting performance targets. In addition, these catalyst systems will need to be highly durable, fault-tolerant and amenable to high-volume production with high yields and exceptional quality. Not all the catalyst approaches currently being pursued will meet those demands.

4,538 citations