scispace - formally typeset
Search or ask a question
Author

Peter W. Grandjean

Bio: Peter W. Grandjean is an academic researcher from Baylor University. The author has contributed to research in topics: Aerobic exercise & Blood lipids. The author has an hindex of 27, co-authored 102 publications receiving 3102 citations. Previous affiliations of Peter W. Grandjean include Auburn University & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: For most individuals, the positive effects of regular exercise are exerted on blood lipids at low training volumes and accrue so that noticeable differences frequently occur with weekly energy expenditures of 1200 to 2200 kcal/wk, it appears that weekly exercise caloric expenditures that meet or exceed the higher end of this range are more likely to produce the desired lipid changes.
Abstract: Dose-response relationships between exercise training volume and blood lipid changes suggest that exercise can favourably alter blood lipids at low training volumes, although the effects may not be observable until certain exercise thresholds are met. The thresholds established from cross-sectional literature occur at training volumes of 24 to 32 km (15 to 20 miles) per week of brisk walking or jogging and elicit between 1200 to 2200 kcal/wk. This range of weekly energy expenditure is associated with 2 to 3 mg/dl increases in high-density lipoprotein-cholesterol (HDL-C) and triglyceride (TG) reductions of 8 to 20 mg/dl. Evidence from cross-sectional studies indicates that greater changes in HDL-C levels can be expected with additional increases in exercise training volume. HDL-C and TG changes are often observed after training regimens requiring energy expenditures similar to those characterised from cross-sectional data. Training programmes that elicit 1200 to 2200 kcal/wk in exercise are often effective at elevating HDL-C levels from 2 to 8 mg/dl, and lowering TG levels by 5 to 38 mg/dl. Exercise training seldom alters total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C). However, this range of weekly exercise energy expenditure is also associated with TC and LDL-C reductions when they are reported. The frequency and extent to which most of these lipid changes are reported are similar in both genders, with the exception of TG. Thus, for most individuals, the positive effects of regular exercise are exerted on blood lipids at low training volumes and accrue so that noticeable differences frequently occur with weekly energy expenditures of 1200 to 2200 kcal/wk. It appears that weekly exercise caloric expenditures that meet or exceed the higher end of this range are more likely to produce the desired lipid changes. This amount of physical activity, performed at moderate intensities, is reasonable and attainable for most individuals and is within the American College of Sports Medicine's currently recommended range for healthy adults.

594 citations

Journal ArticleDOI
TL;DR: Dose-response relationships between exercise training volume and blood lipid changes suggest that exercise can favorably alter blood lipids at low training volumes, although the effects may not be observable until certain exercise thresholds are met.
Abstract: PURPOSE Dose-response relationships between exercise training volume and blood lipid changes suggest that exercise can favorably alter blood lipids at low training volumes, although the effects may not be observable until certain exercise thresholds are met. METHODS AND RESULTS Plasma triglyceride reductions are often observed after exercise training regimens requiring energy expenditures similar to those characterized to increase high-density lipoprotein cholesterol (HDL-C). Thresholds established from cross-sectional and longitudinal exercise training studies indicate that 15 to 20 miles/week of brisk walking or jogging, which elicit between 1,200 to 2,200 kcals of energy expenditure per week, is associated with triglyceride reductions of 5 to 38 mg/dL and HDL-C increases of 2 to 8 mg/dL. Exercise training seldom alters total cholesterol and low-density lipoprotein cholesterol (LDL-C) unless dietary fat intake is reduced and body weight loss is associated with the exercise training program, or both. Thus, for most individuals, the positive effects of regular exercise are exerted on blood lipids at low training volumes and accrue so that noticeable differences frequently occur with energy expenditures of 1,200 to 2,200 kcals/week. CONCLUSIONS It appears that weekly exercise caloric expenditures that meet or exceed the higher end of this range are more likely to produce the desired lipid changes. Regarding hyperlipidemic disorders, the primary means for intervention is pharmacologic, whereas diet modification, weight loss, and exercise, although important, are viewed as adjunctive therapies. Because much is known about the exercise training-induced plasma lipid and lipoprotein modifications as well as the mechanisms responsible for these changes, rehabilitation professionals can better develop a comprehensive medical management plan that optimizes pharmacologic, reduced dietary fat intake, weight loss, and exercise interventions.

385 citations

Journal ArticleDOI
TL;DR: Evidence from both cross-sectional and longitudinal investigations that physical activity lowers CRP levels in a dose-response manner is presented and factors such as body composition, sex, blood sample timing, diet and smoking, which may influence the CRP response to physical activity are examined.
Abstract: Cardiovascular disease (CVD) remains one of the leading causes of death and disability in developed countries around the world despite the documented success of lifestyle and pharmacological interventions. This illustrates the multifactorial nature of atherosclerosis and the use of novel inflammatory markers as an adjunct to risk factor reduction strategies. As evidence continues to accumulate that inflammation is involved in all stages of the development and progression of atherosclerosis, markers of inflammation such as high-sensitivity C-reactive protein (CRP) may provide additional information regarding the biological status of the atherosclerotic lesion. Recent investigations suggest that physical activity reduces CRP levels. Higher levels of physical activity and cardiorespiratory fitness are consistently associated with 6-35% lower CRP levels. Longitudinal training studies that have demonstrated reductions in CRP concentrations range from 16% to 41%, an effect that may be independent of baseline levels of CRP, body composition or weight loss. The average change in CRP associated with physical activity appears to be at least as good, if not better, than currently prescribed pharmacological interventions in similar populations. The primary purpose of this review will be to present evidence from both cross-sectional and longitudinal investigations that physical activity lowers CRP levels in a dose-response manner. Finally, this review will examine factors such as body composition, sex, blood sample timing, diet and smoking, which may influence the CRP response to physical activity.

236 citations

Journal ArticleDOI
TL;DR: Overall, TRF reduced energy intake and did not adversely affect lean mass retention or muscular improvements with short-term RT in young males.
Abstract: A randomized controlled trial was conducted to examine eight weeks of resistance training (RT) with and without time-restricted feeding (TRF) in order to assess nutrient intake and changes in body composition and muscular strength in young recreationally active males. The TRF programme consisted of consuming all calories within a four-hour period of time for four days per week, but included no limitations on quantities or types of foods consumed. The RT programme was performed three days per week and consisted of alternating upper and lower body workouts. For each exercise, four sets leading to muscular failure between 8 and 12 repetitions were employed. Research visits were conducted at baseline, four, and eight weeks after study commencement. Measurements of total body composition by dual-energy X-ray absorptiometry and muscle cross-sectional area by ultrasound were obtained. Upper and lower body strength and endurance were assessed, and four-day dietary records were collected. TRF reduced energ...

199 citations

Journal ArticleDOI
TL;DR: The data indicate that the exercise-induced changes in HDL-C and triglyceride are similar in HC and normocholesterolemic men and may be mediated, at least in part, by an increase in lipoprotein lipase activity.
Abstract: To compare postexercise changes in plasma lipids and lipoprotein enzymes in 13 hypercholesterolemic (HC) and 12 normocholesterolemic men [total cholesterol (TC) 252 +/- 5 vs. 179 +/- 5 mg/dl], fasting blood samples were obtained 24 h before, immediately, 24, and 48 h after a single bout of treadmill walking (70% peak O(2) consumption, 500 kcal expenditure). Significant findings (P < 0.05 for all) for plasma volume-adjusted lipid and enzyme variables were that TC, low-density-lipoprotein cholesterol, and cholesterol ester transfer protein activity were higher in the HC group but did not influence the lipid responses to exercise. Across groups, TC was transiently reduced immediately after exercise but returned to baseline levels by 24 h postexercise. Decreases in triglyceride and increases in high-density-lipoprotein cholesterol (HDL-C) and HDL(3)-C were observed 24 h after exercise and lasted through 48 h. Lipoprotein lipase activity was elevated by 24 h and remained elevated 48 h after exercise. HDL(2)-C, cholesterol ester transfer protein activity, hepatic triglyceride lipase, and lecithin: cholesterol acyltransferase activities did not change after exercise. These data indicate that the exercise-induced changes in HDL-C and triglyceride are similar in HC and normocholesterolemic men and may be mediated, at least in part, by an increase in lipoprotein lipase activity.

161 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The recommended quantity and quality of exercise for developing and maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in healthy adults is discussed in the position stand of the American College of Sports Medicine (ACSM) Position Stand.
Abstract: The purpose of this Position Stand is to provide guidance to professionals who counsel and prescribe individualized exercise to apparently healthy adults of all ages. These recommendations also may apply to adults with certain chronic diseases or disabilities, when appropriately evaluated and advised by a health professional. This document supersedes the 1998 American College of Sports Medicine (ACSM) Position Stand, "The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults." The scientific evidence demonstrating the beneficial effects of exercise is indisputable, and the benefits of exercise far outweigh the risks in most adults. A program of regular exercise that includes cardiorespiratory, resistance, flexibility, and neuromotor exercise training beyond activities of daily living to improve and maintain physical fitness and health is essential for most adults. The ACSM recommends that most adults engage in moderate-intensity cardiorespiratory exercise training for ≥30 min·d on ≥5 d·wk for a total of ≥150 min·wk, vigorous-intensity cardiorespiratory exercise training for ≥20 min·d on ≥3 d·wk (≥75 min·wk), or a combination of moderate- and vigorous-intensity exercise to achieve a total energy expenditure of ≥500-1000 MET·min·wk. On 2-3 d·wk, adults should also perform resistance exercises for each of the major muscle groups, and neuromotor exercise involving balance, agility, and coordination. Crucial to maintaining joint range of movement, completing a series of flexibility exercises for each the major muscle-tendon groups (a total of 60 s per exercise) on ≥2 d·wk is recommended. The exercise program should be modified according to an individual's habitual physical activity, physical function, health status, exercise responses, and stated goals. Adults who are unable or unwilling to meet the exercise targets outlined here still can benefit from engaging in amounts of exercise less than recommended. In addition to exercising regularly, there are health benefits in concurrently reducing total time engaged in sedentary pursuits and also by interspersing frequent, short bouts of standing and physical activity between periods of sedentary activity, even in physically active adults. Behaviorally based exercise interventions, the use of behavior change strategies, supervision by an experienced fitness instructor, and exercise that is pleasant and enjoyable can improve adoption and adherence to prescribed exercise programs. Educating adults about and screening for signs and symptoms of CHD and gradual progression of exercise intensity and volume may reduce the risks of exercise. Consultations with a medical professional and diagnostic exercise testing for CHD are useful when clinically indicated but are not recommended for universal screening to enhance the safety of exercise.

7,223 citations

Journal ArticleDOI
TL;DR: A Report of the American College of Cardiology Foundation/AmericanHeart Association Task Force on Practice Guidelines, and the AmericanCollege of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for CardiovascularAngiography and Interventions, and Society of ThorACic Surgeons
Abstract: Jeffrey L. Anderson, MD, FACC, FAHA, Chair Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect Alice K. Jacobs, MD, FACC, FAHA, Immediate Past Chair 2009–2011 [§§][1] Sidney C. Smith, Jr, MD, FACC, FAHA, Past Chair 2006–2008 [§§][1] Cynthia D. Adams, MSN, APRN-BC, FAHA[§§][1] Nancy M

2,469 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism is presented, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology.
Abstract: The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis an...

2,332 citations

Journal ArticleDOI
TL;DR: This review provides the reader with the up‐to‐date evidence‐based basis for prescribing exercise as medicine in the treatment of 26 different diseases: psychiatric diseases (depression, anxiety, stress, schizophrenia).
Abstract: This review provides the reader with the up-to-date evidence-based basis for prescribing exercise as medicine in the treatment of 26 different diseases: psychiatric diseases (depression, anxiety, stress, schizophrenia); neurological diseases (dementia, Parkinson's disease, multiple sclerosis); metabolic diseases (obesity, hyperlipidemia, metabolic syndrome, polycystic ovarian syndrome, type 2 diabetes, type 1 diabetes); cardiovascular diseases (hypertension, coronary heart disease, heart failure, cerebral apoplexy, and claudication intermittent); pulmonary diseases (chronic obstructive pulmonary disease, asthma, cystic fibrosis); musculo-skeletal disorders (osteoarthritis, osteoporosis, back pain, rheumatoid arthritis); and cancer. The effect of exercise therapy on disease pathogenesis and symptoms are given and the possible mechanisms of action are discussed. We have interpreted the scientific literature and for each disease, we provide the reader with our best advice regarding the optimal type and dose for prescription of exercise.

2,068 citations

Journal ArticleDOI
TL;DR: The role of triglyceride-rich lipoproteins (TRLs) in the evaluation and management of CVD risk was discussed in this article, where the authors highlighted approaches aimed at minimizing the adverse public health-related consequences associated with hypertriglyceridemic states.
Abstract: A long-standing association exists between elevated triglyceride levels and cardiovascular disease* (CVD).1,2 However, the extent to which triglycerides directly promote CVD or represent a biomarker of risk has been debated for 3 decades.3 To this end, 2 National Institutes of Health consensus conferences evaluated the evidentiary role of triglycerides in cardiovascular risk assessment and provided therapeutic recommendations for hypertriglyceridemic states.4,5 Since 1993, additional insights have been made vis-a-vis the atherogenicity of triglyceride-rich lipoproteins (TRLs; ie, chylomicrons and very low-density lipoproteins), genetic and metabolic regulators of triglyceride metabolism, and classification and treatment of hypertriglyceridemia. It is especially disconcerting that in the United States, mean triglyceride levels have risen since 1976, in concert with the growing epidemic of obesity, insulin resistance (IR), and type 2 diabetes mellitus (T2DM).6,7 In contrast, mean low-density lipoprotein cholesterol (LDL-C) levels have receded.7 Therefore, the purpose of this scientific statement is to update clinicians on the increasingly crucial role of triglycerides in the evaluation and management of CVD risk and highlight approaches aimed at minimizing the adverse public health–related consequences associated with hypertriglyceridemic states. This statement will complement recent American Heart Association scientific statements on childhood and adolescent obesity8 and dietary sugar intake9 by emphasizing effective lifestyle strategies designed to lower triglyceride levels and improve overall cardiometabolic health. It is not intended to serve as a specific guideline but will be of value to the Adult Treatment Panel IV (ATP IV) of the National Cholesterol Education Program, from which evidence-based guidelines will ensue. Topics to be addressed include epidemiology and CVD risk, ethnic and racial differences, metabolic determinants, genetic and family determinants, risk factor correlates, and effects related to nutrition, physical activity, and lipid medications. In the United States, the National Health and …

1,499 citations