scispace - formally typeset
Search or ask a question
Author

Peter W. Reeh

Bio: Peter W. Reeh is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Calcitonin gene-related peptide & TRPV1. The author has an hindex of 61, co-authored 180 publications receiving 12118 citations. Previous affiliations of Peter W. Reeh include Heidelberg University & University of Pécs.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that the contribution of CB1-type receptors expressed on the peripheral terminals of nociceptors to cannabinoid-induced analgesia is paramount, which should enable the development of peripherally acting CB1 analgesic agonists without any central side effects.
Abstract: Although endocannabinoids constitute one of the first lines of defense against pain, the anatomical locus and the precise receptor mechanisms underlying cannabinergic modulation of pain are uncertain. Clinical exploitation of the system is severely hindered by the cognitive deficits, memory impairment, motor disturbances and psychotropic effects resulting from the central actions of cannabinoids. We deleted the type 1 cannabinoid receptor (CB1) specifically in nociceptive neurons localized in the peripheral nervous system of mice, preserving its expression in the CNS, and analyzed these genetically modified mice in preclinical models of inflammatory and neuropathic pain. The nociceptor-specific loss of CB1 substantially reduced the analgesia produced by local and systemic, but not intrathecal, delivery of cannabinoids. We conclude that the contribution of CB1-type receptors expressed on the peripheral terminals of nociceptors to cannabinoid-induced analgesia is paramount, which should enable the development of peripherally acting CB1 analgesic agonists without any central side effects.

511 citations

Journal ArticleDOI
TL;DR: It is found that concentrations of plasma methylglyoxal above 600 nM discriminate between diabetes-affected individuals with pain and those without pain, which provides a new basis for the design of therapeutic interventions for painful diabetic neuropathy.
Abstract: Glucose and its metabolic derivatives are increased the plasma of patients with diabetes. Peter Nawroth and colleagues demonstrate that one such metabolite, methylglyoxal, is increased in patients with painful diabetic neuropathy, and find that it acts by modifying the excitability characteristics of a sodium channel protein.

417 citations

Journal ArticleDOI
14 Jun 2007-Nature
TL;DR: This work shows that cooling excitable membranes progressively enhances the voltage-dependent slow inactivation of tetrodotoxin-sensitive VGSCs, and presents strong evidence for a specialized role of Nav1.8 in nociceptors as the critical molecule for the perception of cold pain and pain in the cold.
Abstract: Sensory acuity and motor dexterity deteriorate when human limbs cool down, but pain perception persists and cold-induced pain can become excruciating. Evolutionary pressure to enforce protective behaviour requires that damage-sensing neurons (nociceptors) continue to function at low temperatures. Here we show that this goal is achieved by endowing superficial endings of slowly conducting nociceptive fibres with the tetrodotoxin-resistant voltage-gated sodium channel (VGSC) Na(v)1.8 (ref. 2). This channel is essential for sustained excitability of nociceptors when the skin is cooled. We show that cooling excitable membranes progressively enhances the voltage-dependent slow inactivation of tetrodotoxin-sensitive VGSCs. In contrast, the inactivation properties of Na(v)1.8 are entirely cold-resistant. Moreover, low temperatures decrease the activation threshold of the sodium currents and increase the membrane resistance, augmenting the voltage change caused by any membrane current. Thus, in the cold, Na(v)1.8 remains available as the sole electrical impulse generator in nociceptors that transmits nociceptive information to the central nervous system. Consistent with this concept is the observation that Na(v)1.8-null mutant mice show negligible responses to noxious cold and mechanical stimulation at low temperatures. Our data present strong evidence for a specialized role of Na(v)1.8 in nociceptors as the critical molecule for the perception of cold pain and pain in the cold.

383 citations

Journal ArticleDOI
TL;DR: It is demonstrated that TREK‐1 qualifies as one of the molecular sensors involved in pain perception and as an attractive target for the development of new analgesics.
Abstract: The TREK-1 channel is a temperature-sensitive, osmosensitive and mechano-gated K+ channel with a regulation by Gs and Gq coupled receptors. This paper demonstrates that TREK-1 qualifies as one of the molecular sensors involved in pain perception. TREK-1 is highly expressed in small sensory neurons, is present in both peptidergic and nonpeptidergic neurons and is extensively colocalized with TRPV1, the capsaicin-activated nonselective ion channel. Mice with a disrupted TREK-1 gene are more sensitive to painful heat sensations near the threshold between anoxious warmth and painful heat. This phenotype is associated with the primary sensory neuron, as polymodal C-fibers were found to be more sensitive to heat in single fiber experiments. Knockout animals are more sensitive to low threshold mechanical stimuli and display an increased thermal and mechanical hyperalgesia in conditions of inflammation. They display a largely decreased pain response induced by osmotic changes particularly in prostaglandin E2-sensitized animals. TREK-1 appears as an important ion channel for polymodal pain perception and as an attractive target for the development of new analgesics.

377 citations

Journal ArticleDOI
TL;DR: This work shows that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity, and finds that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent onTRPA1 channel activation in nocICEptive sensory neurons, and develop independently of TLR4 activation.
Abstract: Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.

348 citations


Cited by
More filters
Journal ArticleDOI
22 Oct 1997-Nature
TL;DR: The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo.
Abstract: Capsaicin, the main pungent ingredient in 'hot' chilli peppers, elicits a sensation of burning pain by selectively activating sensory neurons that convey information about noxious stimuli to the central nervous system We have used an expression cloning strategy based on calcium influx to isolate a functional cDNA encoding a capsaicin receptor from sensory neurons This receptor is a non-selective cation channel that is structurally related to members of the TRP family of ion channels The cloned capsaicin receptor is also activated by increases in temperature in the noxious range, suggesting that it functions as a transducer of painful thermal stimuli in vivo

8,186 citations

Journal ArticleDOI
09 Jun 2000-Science
TL;DR: Here, a conceptual framework for the contribution of plasticity in primary sensory and dorsal horn neurons to the pathogenesis of pain is developed, identifying distinct forms of Plasticity, which are term activation, modulation, and modification, that by increasing gain, elicit pain hypersensitivity.
Abstract: We describe those sensations that are unpleasant, intense, or distressing as painful. Pain is not homogeneous, however, and comprises three categories: physiological, inflammatory, and neuropathic pain. Multiple mechanisms contribute, each of which is subject to or an expression of neural plasticity-the capacity of neurons to change their function, chemical profile, or structure. Here, we develop a conceptual framework for the contribution of plasticity in primary sensory and dorsal horn neurons to the pathogenesis of pain, identifying distinct forms of plasticity, which we term activation, modulation, and modification, that by increasing gain, elicit pain hypersensitivity.

3,543 citations

Journal ArticleDOI
16 Oct 2009-Cell
TL;DR: Genetic, electrophysiological, and pharmacological studies are elucidating the molecular mechanisms that underlie detection, coding, and modulation of noxious stimuli that generate pain.

3,394 citations

Journal ArticleDOI
14 Apr 2000-Science
TL;DR: Sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli and are impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation.
Abstract: The capsaicin (vanilloid) receptor VR1 is a cation channel expressed by primary sensory neurons of the "pain" pathway. Heterologously expressed VR1 can be activated by vanilloid compounds, protons, or heat (>43 degrees C), but whether this channel contributes to chemical or thermal sensitivity in vivo is not known. Here, we demonstrate that sensory neurons from mice lacking VR1 are severely deficient in their responses to each of these noxious stimuli. VR1-/- mice showed normal responses to noxious mechanical stimuli but exhibited no vanilloid-evoked pain behavior, were impaired in the detection of painful heat, and showed little thermal hypersensitivity in the setting of inflammation. Thus, VR1 is essential for selective modalities of pain sensation and for tissue injury-induced thermal hyperalgesia.

3,367 citations

Journal ArticleDOI
01 Sep 1998-Neuron
TL;DR: It is shown that protons decrease the temperature threshold for VR1 activation such that even moderately acidic conditions (pH < or = 5.9) activate VR1 at room temperature, and VR1 can be viewed as a molecular integrator of chemical and physical stimuli that elicit pain.

2,959 citations