Author

# Peter W. Shor

Other affiliations: AT&T, University of California, Santa Barbara, AT&T Labs ...read more

Bio: Peter W. Shor is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Quantum entanglement & Quantum information. The author has an hindex of 73, co-authored 248 publications receiving 45562 citations. Previous affiliations of Peter W. Shor include AT&T & University of California, Santa Barbara.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms on a quantum computer and gave an efficient randomized algorithm for these two problems, which takes a number of steps polynomial in the input size of the integer to be factored.

Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

7,427 citations

••

Bell Labs

^{1}TL;DR: Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored are given.

Abstract: A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a cost in computation time of at most a polynomial factor: It is not clear whether this is still true when quantum mechanics is taken into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size, e.g., the number of digits of the integer to be factored. These two problems are generally considered hard on a classical computer and have been used as the basis of several proposed cryptosystems. We thus give the first examples of quantum cryptanalysis. >

6,961 citations

••

TL;DR: U(2) gates are derived, which derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number of unitary operations on arbitrarily many bits.

Abstract: We show that a set of gates that consists of all one-bit quantum gates (U(2)) and the two-bit exclusive-or gate (that maps Boolean values (x,y) to (x,x ⊕y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2 n )) can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized Deutsch-Toffoli gates, that apply a specific U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satisfied. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number required for arbitrary n-bit unitary operations.

3,731 citations

••

Bell Labs

^{1}TL;DR: In the mid-1990s, theorists devised methods to preserve the integrity of quantum bits\char22{}techniques that may become the key to practical quantum computing on a large scale.

Abstract: In the mid-1990s, theorists devised methods to preserve the integrity of quantum bits---techniques that may become the key to practical quantum computing on a large scale.

3,668 citations

••

TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems.

Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed to be able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems that are generally thought to be hard on classical computers and that have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, for example, the number of digits of the integer to be factored.

2,856 citations

##### Cited by

More filters

01 Dec 2010

TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.

Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

•

01 Jan 1996TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.

Abstract: From the Publisher:
A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

••

TL;DR: In this paper, the authors considered factoring integers and finding discrete logarithms on a quantum computer and gave an efficient randomized algorithm for these two problems, which takes a number of steps polynomial in the input size of the integer to be factored.

Abstract: A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

7,427 citations

••

[...]

TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.

Abstract: All our former experience with application of quantum theory seems to say:
{\it what is predicted by quantum formalism must occur in laboratory} But the
essence of quantum formalism - entanglement, recognized by Einstein, Podolsky,
Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a
new resource as real as energy This holistic property of compound quantum systems, which involves
nonclassical correlations between subsystems, is a potential for many quantum
processes, including ``canonical'' ones: quantum cryptography, quantum
teleportation and dense coding However, it appeared that this new resource is
very complex and difficult to detect Being usually fragile to environment, it
is robust against conceptual and mathematical tools, the task of which is to
decipher its rich structure This article reviews basic aspects of entanglement including its
characterization, detection, distillation and quantifying In particular, the
authors discuss various manifestations of entanglement via Bell inequalities,
entropic inequalities, entanglement witnesses, quantum cryptography and point
out some interrelations They also discuss a basic role of entanglement in
quantum communication within distant labs paradigm and stress some
peculiarities such as irreversibility of entanglement manipulations including
its extremal form - bound entanglement phenomenon A basic role of entanglement
witnesses in detection of entanglement is emphasized

6,980 citations

••

[...]

TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.

Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,949 citations