scispace - formally typeset
Search or ask a question
Author

Peter Werner

Bio: Peter Werner is an academic researcher from Max Planck Society. The author has contributed to research in topics: Quantum dot & Molecular beam epitaxy. The author has an hindex of 55, co-authored 365 publications receiving 15384 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching, and introduces templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithographic, and block-copolymer masks.
Abstract: This article presents an overview of the essential aspects in the fabrication of silicon and some silicon/germanium nanostructures by metal-assisted chemical etching. First, the basic process and mechanism of metal-assisted chemical etching is introduced. Then, the various influences of the noble metal, the etchant, temperature, illumination, and intrinsic properties of the silicon substrate (e.g., orientation, doping type, doping level) are presented. The anisotropic and the isotropic etching behaviors of silicon under various conditions are presented. Template-based metal-assisted chemical etching methods are introduced, including templates based on nanosphere lithography, anodic aluminum oxide masks, interference lithography, and block-copolymer masks. The metal-assisted chemical etching of other semiconductors is also introduced. A brief introduction to the application of Si nanostructures obtained by metal-assisted chemical etching is given, demonstrating the promising potential applications of metal-assisted chemical etching. Finally, some open questions in the understanding of metal-assisted chemical etching are compiled.

1,689 citations

Journal ArticleDOI
TL;DR: The study shows that the combination of robust topological surface states and large room temperature carrier mobility, both of which originate from bulk Dirac bands of the Weyl semimetal, is a recipe for high activity HER catalysts.
Abstract: The search for highly efficient and low-cost catalysts is one of the main driving forces in catalytic chemistry. Current strategies for the catalyst design focus on increasing the number and activity of local catalytic sites, such as the edge sites of molybdenum disulfides in the hydrogen evolution reaction (HER). Here, the study proposes and demonstrates a different principle that goes beyond local site optimization by utilizing topological electronic states to spur catalytic activity. For HER, excellent catalysts have been found among the transition-metal monopnictides-NbP, TaP, NbAs, and TaAs-which are recently discovered to be topological Weyl semimetals. Here the study shows that the combination of robust topological surface states and large room temperature carrier mobility, both of which originate from bulk Dirac bands of the Weyl semimetal, is a recipe for high activity HER catalysts. This approach has the potential to go beyond graphene based composite photocatalysts where graphene simply provides a high mobility medium without any active catalytic sites that have been found in these topological materials. Thus, the work provides a guiding principle for the discovery of novel catalysts from the emerging field of topological materials.

1,274 citations

Journal ArticleDOI
01 Jun 2006-Small
TL;DR: This Review discusses the various growth processes, with a focus on the vapor-liquid-solid process, which offers an opportunity for the control of spatial positioning of nanowires.
Abstract: The synthesis of semiconductor nanowires has been studied intensively worldwide for a wide spectrum of materials. Such low-dimensional nanostructures are not only interesting for fundamental research due to their unique structural and physical properties relative to their bulk counterparts, but also offer fascinating potential for future technological applications. Deeper understanding and sufficient control of the growth of nanowires are central to the current research interest. This Review discusses the various growth processes, with a focus on the vapor-liquid-solid process, which offers an opportunity for the control of spatial positioning of nanowires. Strategies for position-controlled and nanopatterned growth of nanowire arrays are reviewed and demonstrated by selected examples as well as discussed in terms of larger-scale realization and future prospects. Issues on building up nanowire-based electronic and photonic devices are addressed at the end of the Review, accompanied by a brief survey of recent progress demonstrated so far on the laboratory level.

770 citations

Journal ArticleDOI
TL;DR: In this article, a low threshold, large T/sub o/ injection laser emission via zero-dimensional states in (InGa)As quantum dots is demonstrated, which are formed due to a morphological transformation of a pseudomorphic In/sub 0.5/Ga/sub0.5 /As layer.
Abstract: Low threshold, large T/sub o/ injection laser emission via zero-dimensional states in (InGa)As quantum dots is demonstrated. The dots are formed due to a morphological transformation of a pseudomorphic In/sub 0.5/Ga/sub 0.5/As layer. Laser diodes are fabricated with a shallow mesa stripe geometry.< >

734 citations

Journal ArticleDOI
TL;DR: The sister compound of W Te2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, is investigated and the observed dome-shaped superconductivity phase diagram provides insights into the interplay between super conductivity and topological physics.
Abstract: Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.

653 citations


Cited by
More filters
Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
13 Oct 2000-Science
TL;DR: In this article, the authors examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots.
Abstract: The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots. Narrowband stimulated emission with a pronounced gain threshold at wavelengths tunable with the size of the nanocrystal was observed, as expected from quantum confinement effects. These results unambiguously demonstrate the feasibility of nanocrystal quantum dot lasers.

2,535 citations

Journal ArticleDOI
TL;DR: Most of the plants used in metal nanoparticle synthesis are shown in this article, and the advantages of using plant and plant-derived materials for biosynthesis of metal nanoparticles have interested researchers to investigate mechanisms of metal ions uptake and bioreduction by plants, and to understand the possible mechanism of nanoparticle formation in plants.

2,424 citations

Journal Article
TL;DR: This work examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots.
Abstract: The development of optical gain in chemically synthesized semiconductor nanoparticles (nanocrystal quantum dots) has been intensely studied as the first step toward nanocrystal quantum dot lasers. We examined the competing dynamical processes involved in optical amplification and lasing in nanocrystal quantum dots and found that, despite a highly efficient intrinsic nonradiative Auger recombination, large optical gain can be developed at the wavelength of the emitting transition for close-packed solids of these dots. Narrowband stimulated emission with a pronounced gain threshold at wavelengths tunable with the size of the nanocrystal was observed, as expected from quantum confinement effects. These results unambiguously demonstrate the feasibility of nanocrystal quantum dot lasers.

2,098 citations