scispace - formally typeset
Search or ask a question
Author

Peter Yin

Other affiliations: Stanford University
Bio: Peter Yin is an academic researcher from Florida State University College of Arts and Sciences. The author has contributed to research in topics: Mendelian randomization & Mendelian Randomization Analysis. The author has an hindex of 3, co-authored 3 publications receiving 454 citations. Previous affiliations of Peter Yin include Stanford University.

Papers
More filters
Journal ArticleDOI
03 May 2013-Science
TL;DR: The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.
Abstract: Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

462 citations

Journal ArticleDOI
TL;DR: Evidence is provided that hypercalcaemia is comorbid with migraine headache diagnoses, and that genetically elevated serum calcium over lifetime appears to increase risk for migraine.
Abstract: Migraine affects ∼14% of the world's population, though not all predisposing causal risk factors are known. We used electronic health records, genetic co-heritability analysis, and a two-sample Mendelian Randomization (MR) design to determine if elevated serum calcium levels were associated with risk of migraine headache. Co-morbidity was evaluated using electronic health records obtained from the PennOmics database comprising >1 million patient entries. Genetic co-heritability and causality via MR was assessed using data from the International Headache Consortium (23,285 cases, 95,425 controls) and circulating serum calcium levels (39,400 subjects). We observed co-occurrence of migraine and hypercalcaemia ICD-9 diagnoses (OR = 1.58, P = 4 × 10-13), even after inclusion of additional risk factors for migraine (OR = 1.23, P = 2 × 10-3). Second, we observed co-heritability (rg = 0.191, P = 0.03) between serum calcium and migraine headache, indicating that these traits have a genetic basis in common. Finally, we found that elevation of serum calcium levels by 1 mg/dl resulting from our genetic score was associated with an increase in risk of migraine (OR = 1.80, 95% CI: 1.31-2.46, P = 2.5 × 10-4), evidence supporting a causal hypothesis. We also present multiple MR sensitivity analyses in support of this central finding. Our results provide evidence that hypercalcaemia is comorbid with migraine headache diagnoses, and that genetically elevated serum calcium over lifetime appears to increase risk for migraine. Further studies will be required to understand the biological mechanism, pathways, and clinical implication for risk management.

25 citations

Journal ArticleDOI
TL;DR: This work utilizes a Mendelian randomization pipeline to develop genetic instruments for seven traits and evaluate potential causal relationships with two disease endpoints, observing two putatively causal associations between blood pressure and bone-mineral density with type 2 diabetes.
Abstract: We present a Mendelian randomization (MR) pipeline (MeRP) to facilitate rapid, causal inference analysis through automating key steps in developing and analyzing genetic instruments obtained from publicly available data. Our tool uses the National Human Genome Research Institute catalog of associations to generate instrumental variable trait files and provides methods for filtering of potential confounding associations as well as linkage disequilibrium. MeRP generates estimated causal effect scores via a MR-score analysis using summary data for disease endpoints typically found in the public domain. We utilize our pipeline to develop genetic instruments for seven traits and evaluate potential causal relationships with two disease endpoints, observing two putatively causal associations between blood pressure and bone-mineral density with type 2 diabetes. Our tool emphasizes the importance of careful but systematic screening of large datasets for discovery and systematic follow-up.

10 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Apr 2016-Science
TL;DR: Electronic design automation principles from EDA are applied to enable increased circuit complexity and to simplify the incorporation of synthetic gene regulation into genetic engineering projects, and it is demonstrated that engineering principles can be applied to identify and suppress errors that complicate the compositions of larger systems.
Abstract: INTRODUCTION Cells respond to their environment, make decisions, build structures, and coordinate tasks. Underlying these processes are computational operations performed by networks of regulatory proteins that integrate signals and control the timing of gene expression. Harnessing this capability is critical for biotechnology projects that require decision-making, control, sensing, or spatial organization. It has been shown that cells can be programmed using synthetic genetic circuits composed of regulators organized to generate a desired operation. However, the construction of even simple circuits is time-intensive and unreliable. RATIONALE Electronic design automation (EDA) was developed to aid engineers in the design of semiconductor-based electronics. In an effort to accelerate genetic circuit design, we applied principles from EDA to enable increased circuit complexity and to simplify the incorporation of synthetic gene regulation into genetic engineering projects. We used the hardware description language Verilog to enable a user to describe a circuit function. The user also specifies the sensors, actuators, and “user constraints file” (UCF), which defines the organism, gate technology, and valid operating conditions. Cello (www.cellocad.org) uses this information to automatically design a DNA sequence encoding the desired circuit. This is done via a set of algorithms that parse the Verilog text, create the circuit diagram, assign gates, balance constraints to build the DNA, and simulate performance. RESULTS Cello designs circuits by drawing upon a library of Boolean logic gates. Here, the gate technology consists of NOT/NOR logic based on repressors. Gate connection is simplified by defining the input and output signals as RNA polymerase (RNAP) fluxes. We found that the gates need to be insulated from their genetic context to function reliably in the context of different circuits. Each gate is isolated using strong terminators to block RNAP leakage, and input interchangeability is improved using ribozymes and promoter spacers. These parts are varied for each gate to avoid breakage due to recombination. Measuring the load of each gate and incorporating this into the optimization algorithms further reduces evolutionary pressure. Cello was applied to the design of 60 circuits for Escherichia coli , where the circuit function was specified using Verilog code and transformed to a DNA sequence. The DNA sequences were built as specified with no additional tuning, requiring 880,000 base pairs of DNA assembly. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts). Across all circuits, 92% of the 412 output states functioned as predicted. CONCLUSION Our work constitutes a hardware description language for programming living cells. This required the co-development of design algorithms with gates that are sufficiently simple and robust to be connected by automated algorithms. We demonstrate that engineering principles can be applied to identify and suppress errors that complicate the compositions of larger systems. This approach leads to highly repetitive and modular genetics, in stark contrast to the encoding of natural regulatory networks. The use of a hardware-independent language and the creation of additional UCFs will allow a single design to be transformed into DNA for different organisms, genetic endpoints, operating conditions, and gate technologies.

813 citations

Journal ArticleDOI
TL;DR: In this article, a review describes new tools that aid the construction of genetic circuits and discusses the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts.
Abstract: Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.

723 citations

Journal ArticleDOI
TL;DR: This Timeline article charts the technological and cultural lifetime of synthetic biology, with an emphasis on key breakthroughs and future challenges.
Abstract: The ability to rationally engineer microorganisms has been a long-envisioned goal dating back more than a half-century. With the genomics revolution and rise of systems biology in the 1990s came the development of a rigorous engineering discipline to create, control and programme cellular behaviour. The resulting field, known as synthetic biology, has undergone dramatic growth throughout the past decade and is poised to transform biotechnology and medicine. This Timeline article charts the technological and cultural lifetime of synthetic biology, with an emphasis on key breakthroughs and future challenges.

663 citations

01 Apr 2014
TL;DR: Better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.
Abstract: Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.

641 citations