scispace - formally typeset
Search or ask a question
Author

Peter Zoller

Bio: Peter Zoller is an academic researcher from University of Innsbruck. The author has contributed to research in topics: Quantum & Quantum simulator. The author has an hindex of 134, co-authored 734 publications receiving 76093 citations. Previous affiliations of Peter Zoller include Leibniz University of Hanover & University of Colorado Boulder.


Papers
More filters
Journal ArticleDOI
TL;DR: A quantum computer can be implemented with cold ions confined in a linear trap and interacting with laser beams, where decoherence is negligible, and the measurement can be carried out with a high efficiency.
Abstract: A quantum computer can be implemented with cold ions confined in a linear trap and interacting with laser beams. Quantum gates involving any pair, triplet, or subset of ions can be realized by coupling the ions through the collective quantized motion. In this system decoherence is negligible, and the measurement (readout of the quantum register) can be carried out with a high efficiency.

3,247 citations

Journal ArticleDOI
22 Nov 2001-Nature
TL;DR: It is shown that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.
Abstract: Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

3,126 citations

Journal ArticleDOI
TL;DR: In this paper, the Bose-Hubbard model was used to model the phase transition from the superfluid to the Mott insulator phase induced by varying the depth of the optical potential.
Abstract: The dynamics of an ultracold dilute gas of bosonic atoms in an optical lattice can be described by a Bose-Hubbard model where the system parameters are controlled by laser light We study the continuous (zero temperature) quantum phase transition from the superfluid to the Mott insulator phase induced by varying the depth of the optical potential, where the Mott insulator phase corresponds to a commensurate filling of the lattice (``optical crystal'') Examples for formation of Mott structures in optical lattices with a superimposed harmonic trap and in optical superlattices are presented

2,873 citations

Journal ArticleDOI
TL;DR: This work presents a scheme of a quantum repeater that connects a string of (imperfect) entangled pairs of particles by using a novel nested purification protocol, thereby creating a single distant pair of high fidelity.
Abstract: In quantum communication via noisy channels, the error probability scales exponentially with the length of the channel. We present a scheme of a quantum repeater that overcomes this limitation. The central idea is to connect a string of (imperfect) entangled pairs of particles by using a novel nested purification protocol, thereby creating a single distant pair of high fidelity. Our scheme tolerates general errors on the percent level, it works with a polynomial overhead in time and a logarithmic overhead in the number of particles that need to be controlled locally.

2,787 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a scheme that allows to implement robust quantum communication over long lossy channels, which involves laser manipulation of atomic ensembles, beam splitters and single-photon detectors with moderate efficiencies.
Abstract: Quantum communication holds a promise for absolutely secure transmission of secret messages and faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for physical implementation of quantum communication. However, due to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. We describe a scheme that allows to implement robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and therefore well fits the status of the current experimental technology. We show that the communication efficiency scale polynomially with the channel length thereby facilitating scalability to very long distances.

2,147 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations