scispace - formally typeset
Search or ask a question
Author

Petia Kovatcheva-Datchary

Bio: Petia Kovatcheva-Datchary is an academic researcher from University of Gothenburg. The author has contributed to research in topics: Gut flora & Microbiome. The author has an hindex of 21, co-authored 30 publications receiving 8920 citations. Previous affiliations of Petia Kovatcheva-Datchary include Dalian Institute of Chemical Physics.

Papers
More filters
Journal ArticleDOI
02 Jun 2016-Cell
TL;DR: Data is reviewed supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs), which affect various physiological processes and may contribute to health and disease.

3,363 citations

Journal ArticleDOI
TL;DR: The gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers and nutrition had a major impact on early microbiota composition and function, with cessation of breast-feeding, rather than introduction of solid food, being required for maturation into an adult-like microbiota.

2,227 citations

Journal ArticleDOI
16 Jan 2014-Cell
TL;DR: It is shown that the short-chain fatty acids propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms, and the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.

1,529 citations

Journal ArticleDOI
TL;DR: It is indicated that Prevotella plays a role in the BKB-induced improvement in glucose metabolism observed in certain individuals, potentially by promoting increased glycogen storage.

1,029 citations

Journal ArticleDOI
08 May 2014-Nature
TL;DR: It is demonstrated that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach, rather, VSG is associated with increased circulating bile acids, and associated changes to gut microbial communities, which point to bile acid and FXR signalling as an important molecular underpinning for the beneficial effects of this weight-loss surgery.
Abstract: Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are at present the most effective therapy for the treatment of obesity, and are associated with considerable improvements in co-morbidities, including type-2 diabetes mellitus. The underlying molecular mechanisms contributing to these benefits remain largely undetermined, despite offering the potential to reveal new targets for therapeutic intervention. Substantial changes in circulating total bile acids are known to occur after VSG. Moreover, bile acids are known to regulate metabolism by binding to the nuclear receptor FXR (farsenoid-X receptor, also known as NR1H4). We therefore examined the results of VSG surgery applied to mice with diet-induced obesity and targeted genetic disruption of FXR. Here we demonstrate that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach. Rather, VSG is associated with increased circulating bile acids, and associated changes to gut microbial communities. Moreover, in the absence of FXR, the ability of VSG to reduce body weight and improve glucose tolerance is substantially reduced. These results point to bile acids and FXR signalling as an important molecular underpinning for the beneficial effects of this weight-loss surgery. Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are the most effective therapy for the treatment of obesity; now bile acids, and the presence of the nuclear bile acid receptor FXR, are shown to underpin the mechanism of VSG action, and the ability of VSG to reduce body weight and improve glucose tolerance is substantially reduced if FXR is absent. The use and misuse of invasive surgery to control obesity and related conditions is much debated. Whatever its merits, the associated costs and risks mean that it is inappropriate in many cases. This study challenges the notion that such surgery elicits weight loss solely by making it physically difficult to consume or absorb calories, and raises the prospect that it may be possible to develop therapies that achieve the same ends without the need for a scalpel. Vertical sleeve gastrectomy (VSG), in which some 80% of the stomach is removed to create a gastric 'sleeve' contiguous with the oesophagus and duodenum, is known to induce loss of body weight and fat mass, and improves glucose tolerance in humans and rodents. Randy Seeley and colleagues show here that the therapeutic effect of VSG in mice arises not from the mechanical restrictions of a smaller stomach but from the associated increase in the levels of circulating bile acids and changes to gut microbial communities. Moreover, in the absence of nuclear bile acid receptor FXR, the ability of VSG to reduce body weight and improve glucose tolerance is substantially reduced.

805 citations


Cited by
More filters
Journal ArticleDOI
02 Jun 2016-Cell
TL;DR: Data is reviewed supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs), which affect various physiological processes and may contribute to health and disease.

3,363 citations

Journal ArticleDOI
TL;DR: The goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category.
Abstract: With the continued interest in the role of the gut microbiota in health, attention has now turned to how to harness the microbiota for the benefit of the host. This Consensus Statement outlines the definition and scope of the term 'prebiotic' as determined by an expert panel convened by the International Scientific Association for Probiotics and Prebiotics in December 2016. In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation.

2,863 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: The large majority of studies on the role of the microbiome in the pathogenesis of disease are correlative and preclinical; several have influenced clinical practice.
Abstract: The large majority of studies on the role of the microbiome in the pathogenesis of disease are correlative and preclinical; several have influenced clinical practice.

2,083 citations

Journal ArticleDOI
TL;DR: This review aims to pull together recent findings on the role of SCFA in human metabolism to highlight the multi-faceted role ofSCFA on different metabolic systems.
Abstract: The formation of SCFA is the result of a complex interplay between diet and the gut microbiota within the gut lumen environment. The discovery of receptors, across a range of cell and tissue types for which short chain fatty acids SCFA appear to be the natural ligands, has led to increased interest in SCFA as signaling molecules between the gut microbiota and the host. SCFA represent the major carbon flux from the diet through the gut microbiota to the host and evidence is emerging for a regulatory role of SCFA in local, intermediary and peripheral metabolism. However, a lack of well-designed and controlled human studies has hampered our understanding of the significance of SCFA in human metabolic health. This review aims to pull together recent findings on the role of SCFA in human metabolism to highlight the multi-faceted role of SCFA on different metabolic systems.

1,898 citations