scispace - formally typeset
Search or ask a question
Author

Petr Danecek

Bio: Petr Danecek is an academic researcher from Wellcome Trust Sanger Institute. The author has contributed to research in topics: Population & Genome. The author has an hindex of 24, co-authored 47 publications receiving 17075 citations.


Papers
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
TL;DR: The SAMtools and BCFtools packages represent a unique collection of tools that have been used in numerous other software projects and countless genomic pipelines and are freely available on GitHub under the permissive MIT licence, free for both noncommercial and commercial use.
Abstract: Background: SAMtools and BCFtools are widely used programs for processing and analysing high-throughput sequencing data. They include tools for file format conversion and manipulation, sorting, querying, statistics, variant calling, and effect analysis amongst other methods. Findings: The first version appeared online 12 years ago and has been maintained and further developed ever since, with many new features and improvements added over the years. The SAMtools and BCFtools packages represent a unique collection of tools that have been used in numerous other software projects and countless genomic pipelines. Conclusion: Both SAMtools and BCFtools are freely available on GitHub under the permissive MIT licence, free for both non-commercial and commercial use. Both packages have been installed >1 million times via Bioconda. The source code and documentation are available from https://www.htslib.org.

2,448 citations

Journal ArticleDOI
Shane A. McCarthy1, Sayantan Das2, Warren W. Kretzschmar3, Olivier Delaneau4, Andrew R. Wood5, Alexander Teumer6, Hyun Min Kang2, Christian Fuchsberger2, Petr Danecek1, Kevin Sharp3, Yang Luo1, C Sidore7, Alan Kwong2, Nicholas J. Timpson8, Seppo Koskinen, Scott I. Vrieze9, Laura J. Scott2, He Zhang2, Anubha Mahajan3, Jan H. Veldink, Ulrike Peters10, Ulrike Peters11, Carlos N. Pato12, Cornelia M. van Duijn13, Christopher E. Gillies2, Ilaria Gandin14, Massimo Mezzavilla, Arthur Gilly1, Massimiliano Cocca14, Michela Traglia, Andrea Angius7, Jeffrey C. Barrett1, D.I. Boomsma15, Kari Branham2, Gerome Breen16, Gerome Breen17, Chad M. Brummett2, Fabio Busonero7, Harry Campbell18, Andrew T. Chan19, Sai Chen2, Emily Y. Chew20, Francis S. Collins20, Laura J Corbin8, George Davey Smith8, George Dedoussis21, Marcus Dörr6, Aliki-Eleni Farmaki21, Luigi Ferrucci20, Lukas Forer22, Ross M. Fraser2, Stacey Gabriel23, Shawn Levy, Leif Groop24, Leif Groop25, Tabitha A. Harrison10, Andrew T. Hattersley5, Oddgeir L. Holmen26, Kristian Hveem26, Matthias Kretzler2, James Lee27, Matt McGue28, Thomas Meitinger29, David Melzer5, Josine L. Min8, Karen L. Mohlke30, John B. Vincent31, Matthias Nauck6, Deborah A. Nickerson11, Aarno Palotie19, Aarno Palotie23, Michele T. Pato12, Nicola Pirastu14, Melvin G. McInnis2, J. Brent Richards32, J. Brent Richards16, Cinzia Sala, Veikko Salomaa, David Schlessinger20, Sebastian Schoenherr22, P. Eline Slagboom33, Kerrin S. Small16, Tim D. Spector16, Dwight Stambolian34, Marcus A. Tuke5, Jaakko Tuomilehto, Leonard H. van den Berg, Wouter van Rheenen, Uwe Völker6, Cisca Wijmenga35, Daniela Toniolo, Eleftheria Zeggini1, Paolo Gasparini14, Matthew G. Sampson2, James F. Wilson18, Timothy M. Frayling5, Paul I.W. de Bakker36, Morris A. Swertz35, Steven A. McCarroll19, Charles Kooperberg10, Annelot M. Dekker, David Altshuler, Cristen J. Willer2, William G. Iacono28, Samuli Ripatti24, Nicole Soranzo27, Nicole Soranzo1, Klaudia Walter1, Anand Swaroop20, Francesco Cucca7, Carl A. Anderson1, Richard M. Myers, Michael Boehnke2, Mark I. McCarthy3, Mark I. McCarthy37, Richard Durbin1, Gonçalo R. Abecasis2, Jonathan Marchini3 
TL;DR: A reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies.
Abstract: We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole-genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1% and a large increase in the number of SNPs tested in association studies, and it can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.

2,149 citations

Journal ArticleDOI
15 Sep 2011-Nature
TL;DR: These sequences provide a starting point for a new era in the functional analysis of a key model organism and show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus.
Abstract: We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.

1,453 citations

Journal ArticleDOI
TL;DR: A new phasing algorithm, Eagle2, is introduced that attains high accuracy across a broad range of cohort sizes by efficiently leveraging information from large external reference panels (such as the Haplotype Reference Consortium; HRC) using a new data structure based on the positional Burrows-Wheeler transform.
Abstract: Po-Ru Loh, Alkes Price and colleagues present Eagle2, a reference-based phasing algorithm that allows for highly accurate and efficient phasing of genotypes across a broad range of cohort sizes. They demonstrate an approximately 10% improvement in accuracy and 20% improvement in speed compared to a competing method, SHAPEIT2.

1,246 citations


Cited by
More filters
Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

12,661 citations

Journal ArticleDOI
Monkol Lek, Konrad J. Karczewski1, Konrad J. Karczewski2, Eric Vallabh Minikel1, Eric Vallabh Minikel2, Kaitlin E. Samocha, Eric Banks2, Timothy Fennell2, Anne H. O’Donnell-Luria3, Anne H. O’Donnell-Luria2, Anne H. O’Donnell-Luria1, James S. Ware, Andrew J. Hill1, Andrew J. Hill2, Andrew J. Hill4, Beryl B. Cummings2, Beryl B. Cummings1, Taru Tukiainen2, Taru Tukiainen1, Daniel P. Birnbaum2, Jack A. Kosmicki, Laramie E. Duncan1, Laramie E. Duncan2, Karol Estrada1, Karol Estrada2, Fengmei Zhao1, Fengmei Zhao2, James Zou2, Emma Pierce-Hoffman2, Emma Pierce-Hoffman1, Joanne Berghout5, David Neil Cooper6, Nicole A. Deflaux7, Mark A. DePristo2, Ron Do, Jason Flannick2, Jason Flannick1, Menachem Fromer, Laura D. Gauthier2, Jackie Goldstein2, Jackie Goldstein1, Namrata Gupta2, Daniel P. Howrigan1, Daniel P. Howrigan2, Adam Kiezun2, Mitja I. Kurki1, Mitja I. Kurki2, Ami Levy Moonshine2, Pradeep Natarajan, Lorena Orozco, Gina M. Peloso2, Gina M. Peloso1, Ryan Poplin2, Manuel A. Rivas2, Valentin Ruano-Rubio2, Samuel A. Rose2, Douglas M. Ruderfer8, Khalid Shakir2, Peter D. Stenson6, Christine Stevens2, Brett Thomas1, Brett Thomas2, Grace Tiao2, María Teresa Tusié-Luna, Ben Weisburd2, Hong-Hee Won9, Dongmei Yu, David Altshuler10, David Altshuler2, Diego Ardissino, Michael Boehnke11, John Danesh12, Stacey Donnelly2, Roberto Elosua, Jose C. Florez2, Jose C. Florez1, Stacey Gabriel2, Gad Getz2, Gad Getz1, Stephen J. Glatt13, Christina M. Hultman14, Sekar Kathiresan, Markku Laakso15, Steven A. McCarroll2, Steven A. McCarroll1, Mark I. McCarthy16, Mark I. McCarthy17, Dermot P.B. McGovern18, Ruth McPherson19, Benjamin M. Neale1, Benjamin M. Neale2, Aarno Palotie, Shaun Purcell8, Danish Saleheen20, Jeremiah M. Scharf, Pamela Sklar, Patrick F. Sullivan21, Patrick F. Sullivan14, Jaakko Tuomilehto22, Ming T. Tsuang23, Hugh Watkins16, Hugh Watkins17, James G. Wilson24, Mark J. Daly1, Mark J. Daly2, Daniel G. MacArthur2, Daniel G. MacArthur1 
18 Aug 2016-Nature
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.

8,758 citations

Journal ArticleDOI
11 Oct 2018-Nature
TL;DR: Deep phenotype and genome-wide genetic data from 500,000 individuals from the UK Biobank is described, describing population structure and relatedness in the cohort, and imputation to increase the number of testable variants to 96 million.
Abstract: The UK Biobank project is a prospective cohort study with deep genetic and phenotypic data collected on approximately 500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment. The open resource is unique in its size and scope. A rich variety of phenotypic and health-related information is available on each participant, including biological measurements, lifestyle indicators, biomarkers in blood and urine, and imaging of the body and brain. Follow-up information is provided by linking health and medical records. Genome-wide genotype data have been collected on all participants, providing many opportunities for the discovery of new genetic associations and the genetic bases of complex traits. Here we describe the centralized analysis of the genetic data, including genotype quality, properties of population structure and relatedness of the genetic data, and efficient phasing and genotype imputation that increases the number of testable variants to around 96 million. Classical allelic variation at 11 human leukocyte antigen genes was imputed, resulting in the recovery of signals with known associations between human leukocyte antigen alleles and many diseases.

4,489 citations

Journal ArticleDOI
12 Oct 2017-Nature
TL;DR: It is found that local genetic variation affects gene expression levels for the majority of genes, and inter-chromosomal genetic effects for 93 genes and 112 loci are identified, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
Abstract: Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

3,289 citations

Journal ArticleDOI
17 Apr 2018-Immunity
TL;DR: An extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA identifies six immune subtypes that encompass multiple cancer types and are hypothesized to define immune response patterns impacting prognosis.

3,246 citations