scispace - formally typeset
Search or ask a question
Author

Petr Jansa

Bio: Petr Jansa is an academic researcher from Academy of Sciences of the Czech Republic. The author has contributed to research in topics: Meiosis & Synapsis. The author has an hindex of 24, co-authored 106 publications receiving 1893 citations. Previous affiliations of Petr Jansa include Czechoslovak Academy of Sciences & German Cancer Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that NoRC is a novel nucleolar chromatin remodeling machine that may serve a role in the regulation of the rDNA locus.
Abstract: Transcription by RNA polymerase I on nucleosomal templates requires binding of the transcription termination factor TTF-I to a cognate site 160 bp upstream of the transcription start site. Binding of TTF-I is accompanied by changes in the chromatin architecture which suggests that TTF-I recruits a remodeling activity to the rDNA promoter. We have cloned a cDNA that encodes TIP5 (TTF-I-interacting protein 5), a 205 kDa protein that shares a number of important protein domains with WSTF (Williams syndrome transcription factor) and hAcf1/WCRF180, the largest subunits of human chromatin remodeling complexes hCHRAC and WCRF. TIP5 co-localizes with the basal RNA polymerase I transcription factor UBF in the nucleolus and is associated with SNF2h. The cellular TIP5–SNF2h complex, termed NoRC (nucleolar remodeling complex), induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. The results suggest that NoRC is a novel nucleolar chromatin remodeling machine that may serve a role in the regulation of the rDNA locus.

322 citations

Journal ArticleDOI
TL;DR: Recombinant PTRF is capable of dissociating ternary Pol I transcription complexes in vitro as revealed by release of both Pol I and nascent transcripts from the template.
Abstract: Termination of transcription by RNA polymerase I (Pol I) is a two-step process which involves pausing of elongating transcription complexes and release of both pre-rRNA and Pol I from the template. In mouse, pausing of elongation complexes is mediated by the transcription termination factor TTF-I bound to the 'Sal box' terminator downstream of the rDNA transcription unit. Dissociation of paused ternary complexes requires a cellular factor, termed PTRF for Pol I and transcript release factor. Here we describe the molecular cloning of a cDNA corresponding to murine PTRF. Recombinant PTRF is capable of dissociating ternary Pol I transcription complexes in vitro as revealed by release of both Pol I and nascent transcripts from the template. Consistent with its function in transcription termination, PTRF interacts with both TTF-I and Pol I. Moreover, we demonstrate specific binding of PTRF to transcripts containing the 3' end of pre-rRNA. Substitution of 3'-terminal uridylates by guanine residues abolishes PTRF binding and impairs release activity. The results reveal a network of protein-protein and protein-nucleic acid interactions that governs termination of Pol I transcription.

152 citations

Journal ArticleDOI
TL;DR: In skeletal muscle isolated from non-transgenic spontaneously hypertensive rats, in vitro incubation with recombinant resistin significantly inhibited insulin-stimulated glycogenesis and reduced glucose oxidation, raising the possibility that autocrine effects of resistin in adipocytes, leading to release of other prodiabetic effector molecules from fat and/or paracrine actions of resistins embedded within skeletal muscle, may contribute to the pathogenesis of disordered skeletal muscle glucose metabolism and impaired glucose tolerance.

124 citations

Journal ArticleDOI
TL;DR: These findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.
Abstract: Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X-autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencing of unsynapsed chromatin (MSUC). Here, we report on the transcriptional down-regulation of genes within the unsynapsed region of the rearranged mouse chromosome 17, and on the subsequent disturbance of X chromosome inactivation. The partial transcriptional suppression of genes in the unsynapsed chromatin was most prominent prior to the mid-pachytene stage of primary spermatocytes. Later, during the mid-late pachytene, the rearranged autosomes colocalized with the XY body, and the X chromosome failed to undergo proper transcriptional silencing. Our findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.

95 citations

Journal ArticleDOI
TL;DR: It is demonstrated that PTRF promotes release of terminated transcripts, irrespective of whether mouse Pol I has interacted with the murine termination factor TTF-I or its yeast homolog Reb1p, but not the lac repressor.
Abstract: Transcription termination by RNA polymerase I (Pol I) is a stepwise process. First the elongating RNA polymerase is forced to pause by DNA-bound transcription termination factor (TTF-I). Then the ternary transcription complex is dissociated by PTRF, a novel factor that promotes release of both nascent transcripts and Pol I from the template. In this study we have investigated the ability of PTRF to liberate transcripts from ternary transcription complexes isolated from yeast and mouse. Using immobilized, tailed templates that contain terminator sequences from Saccharomyces cerevisiae and mouse, respectively, we demonstrate that PTRF promotes release of terminated transcripts, irrespective of whether mouse Pol I has interacted with the murine termination factor TTF-I or its yeast homolog Reb1p. In contrast, mouse Pol I paused by the lac repressor remains bound to the template both in the presence and absence of PTRF. We demonstrate that PTRF interacts with the largest subunit of murine Pol I, with TTF-I and Reb1p, but not the lac repressor. The results imply that Pol I transcription termination in yeast and mouse is mediated by conserved interactions between Pol I, Reb1p/TTF-I and PTRF.

81 citations


Cited by
More filters
Journal ArticleDOI
28 Jan 2010-Nature
TL;DR: New methods for the genome-wide analysis of chromatin are providing insight into its roles in development and their underlying mechanisms, and particularly intriguing are the findings that specialized assemblies of ATP-dependent remodellers are essential for establishing and maintaining pluripotent and multipotent states in cells.
Abstract: New methods for the genome-wide analysis of chromatin are providing insight into its roles in development and their underlying mechanisms. Current studies indicate that chromatin is dynamic, with its structure and its histone modifications undergoing global changes during transitions in development and in response to extracellular cues. In addition to DNA methylation and histone modification, ATP-dependent enzymes that remodel chromatin are important controllers of chromatin structure and assembly, and are major contributors to the dynamic nature of chromatin. Evidence is emerging that these chromatin-remodelling enzymes have instructive and programmatic roles during development. Particularly intriguing are the findings that specialized assemblies of ATP-dependent remodellers are essential for establishing and maintaining pluripotent and multipotent states in cells.

1,011 citations

01 Sep 2010
TL;DR: In this paper, the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations for Pd-catalyzed amination reactions is discussed.
Abstract: Dialkylbiaryl phosphines are a valuable class of ligand for Pd-catalyzed amination reactions and have been applied in a range of contexts. This perspective attempts to aid the reader in the selection of the best choice of reaction conditions and ligand of this class for the most commonly encountered and practically important substrate combinations.

966 citations

Journal ArticleDOI
TL;DR: Recent progress is summarized in the understanding of the mechanisms underlying the nucleosome remodeling reaction, the targeting of remodeling machines to selected sites in chromatin, and their integration into complex regulatory schemes.
Abstract: It has been a long-standing challenge to decipher the principles that enable cells to both organize their genomes into compact chromatin and ensure that the genetic information remains accessible to regulatory factors and enzymes within the confines of the nucleus. The discovery of nucleosome remodeling activities that utilize the energy of ATP to render nucleosomal DNA accessible has been a great leap forward. In vitro, these enzymes weaken the tight wrapping of DNA around the histone octamers, thereby facilitating the sliding of histone octamers to neighboring DNA segments, their displacement to unlinked DNA, and the accumulation of patches of accessible DNA on the surface of nucleosomes. It is presumed that the collective action of these enzymes endows chromatin with dynamic properties that govern all nuclear functions dealing with chromatin as a substrate. The diverse set of ATPases that qualify as the molecular motors of the nucleosome remodeling process have a common history and are part of a superfamily. The physiological context of their remodeling action builds on the association with a wide range of other proteins to form distinct complexes for nucleosome remodeling. This review summarizes the recent progress in our understanding of the mechanisms underlying the nucleosome remodeling reaction, the targeting of remodeling machines to selected sites in chromatin, and their integration into complex regulatory schemes.

822 citations

Journal ArticleDOI
TL;DR: New studies of humans and model organisms have shed new light on the complexity of meiotic defects, providing evidence that the age-related increase in errors in the human female is not attributable to a single factor but to an interplay between unique features of oogenesis and a host of endogenous and exogenous factors.
Abstract: Trisomic and monosomic (aneuploid) embryos account for at least 10% of human pregnancies and, for women nearing the end of their reproductive lifespan, the incidence may exceed 50%. The errors that lead to aneuploidy almost always occur in the oocyte but, despite intensive investigation, the underlying molecular basis has remained elusive. Recent studies of humans and model organisms have shed new light on the complexity of meiotic defects, providing evidence that the age-related increase in errors in the human female is not attributable to a single factor but to an interplay between unique features of oogenesis and a host of endogenous and exogenous factors.

796 citations

Journal ArticleDOI
TL;DR: The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between Caveolae dysfunction and human diseases, including muscular dystrophies and cancer.
Abstract: Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.

764 citations