scispace - formally typeset
Search or ask a question
Author

Philip A. MacFaul

Bio: Philip A. MacFaul is an academic researcher from AstraZeneca. The author has contributed to research in topics: Cathepsin K & Estrogen receptor. The author has an hindex of 16, co-authored 35 publications receiving 1096 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The effects on aqueous solubility, plasma protein binding and oral exposure of adding substituents to aromatic rings and methylating heteroatoms are focused upon.
Abstract: By identifying every pair of molecules that differ only by a particular, well-defined, structural transformation in a database of measured properties and computing the corresponding change in property, we obtain an overview of the effect that structural change has upon the property and set an expectation for what will happen when that transformation is applied elsewhere. The mean change indicates the expected magnitude of the change in the property and the number of cases in which the property increases give the probability that the structural transformation will cause the property to increase. Outliers indicate potential ways of avoiding the general trend. Comparing to changes in lipophilicity highlights structural transformations that have unusual effects, some of which can be explained by conformational changes. In this paper, we focus upon the effects on aqueous solubility, plasma protein binding and oral exposure of adding substituents to aromatic rings and methylating heteroatoms.

241 citations

Journal ArticleDOI
TL;DR: The pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+ breast cells that could provide meaningful benefit to ER(+) breast cancer patients.
Abstract: Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.

155 citations

Journal ArticleDOI
TL;DR: The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described.
Abstract: The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.

143 citations

Journal ArticleDOI
TL;DR: The crystallography results support the findings from the fluorescence displacement assay and indicate that drug binding to subdomain IB might also be important location for certain compounds.

83 citations

Journal ArticleDOI
TL;DR: The discovery is made of 64 (AZD0156), an exceptionally potent and selective inhibitor of ATM based on an imidazo[4,5- c]quinolin-2-one core that has good preclinical phamacokinetics, a low predicted clinical dose, and a high maximum absorbable dose.
Abstract: ATM inhibitors, such as 7, have demonstrated the antitumor potential of ATM inhibition when combined with DNA double-strand break-inducing agents in mouse xenograft models. However, the properties of 7 result in a relatively high predicted clinically efficacious dose. In an attempt to minimize attrition during clinical development, we sought to identify ATM inhibitors with a low predicted clinical dose (<50 mg) and focused on strategies to increase both ATM potency and predicted human pharmacokinetic half-life (predominantly through the increase of volume of distribution). These efforts resulted in the discovery of 64 (AZD0156), an exceptionally potent and selective inhibitor of ATM based on an imidazo[4,5-c]quinolin-2-one core. 64 has good preclinical phamacokinetics, a low predicted clinical dose, and a high maximum absorbable dose. 64 has been shown to potentiate the efficacy of the approved drugs irinotecan and olaparib in disease relevant mouse models and is currently undergoing clinical evaluation w...

76 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: HSA is a valuable biomarker of many diseases, including cancer, rheumatoid arthritis, ischemia, post-menopausal obesity, severe acute graft-versus-host disease, and diseases that need monitoring of the glycemic control.

1,257 citations

Journal ArticleDOI
TL;DR: In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Abstract: The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.

1,199 citations

Journal ArticleDOI
TL;DR: This research presents a novel, scalable, and scalable approaches that can be applied to the rapidly changing and rapidly changing environment of drug discovery and development.
Abstract: Fraser F. Fleming,* Lihua Yao, P. C. Ravikumar, Lee Funk, and Brian C. Shook Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282-1530, Mylan Pharmaceuticals Inc., 781 Chestnut Ridge Road, Morgantown, West Virginia 26505, and Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477

1,058 citations

Journal ArticleDOI
TL;DR: Induced protein degradation has the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.
Abstract: Small-molecule drug discovery has traditionally focused on occupancy of a binding site that directly affects protein function, and this approach typically precludes targeting proteins that lack such amenable sites. Furthermore, high systemic drug exposures may be needed to maintain sufficient target inhibition in vivo, increasing the risk of undesirable off-target effects. Induced protein degradation is an alternative approach that is event-driven: upon drug binding, the target protein is tagged for elimination. Emerging technologies based on proteolysis-targeting chimaeras (PROTACs) that exploit cellular quality control machinery to selectively degrade target proteins are attracting considerable attention in the pharmaceutical industry owing to the advantages they could offer over traditional small-molecule strategies. These advantages include the potential to reduce systemic drug exposure, the ability to counteract increased target protein expression that often accompanies inhibition of protein function and the potential ability to target proteins that are not currently therapeutically tractable, such as transcription factors, scaffolding and regulatory proteins.

854 citations

Journal ArticleDOI
TL;DR: This Perspective provides guidance on the application of plasma protein binding information in drug discovery by considering that practices based on free drug fraction are usually misleading and could result in the wrong compounds being advanced through drug discovery programmes.
Abstract: Data from in vitro plasma protein binding experiments that determine the fraction of protein-bound drug are frequently used in drug discovery to guide structure design and to prioritize compounds for in vivo studies. However, we consider that these practices are usually misleading, because in vivo efficacy is determined by the free (unbound) drug concentration surrounding the therapeutic target, not by the free drug fraction. These practices yield no enhancement of the in vivo free drug concentration. So, decisions based on free drug fraction could result in the wrong compounds being advanced through drug discovery programmes. This Perspective provides guidance on the application of plasma protein binding information in drug discovery.

689 citations