scispace - formally typeset
Search or ask a question
Author

Philip Bull

Bio: Philip Bull is an academic researcher from Queen Mary University of London. The author has contributed to research in topics: Intensity mapping & Redshift. The author has an hindex of 34, co-authored 135 publications receiving 4715 citations. Previous affiliations of Philip Bull include University of Oslo & University of the Western Cape.


Papers
More filters
Journal ArticleDOI
TL;DR: There is a persistent interest in extending cosmology beyond the standard model, ΛCDM, motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm as mentioned in this paper.

378 citations

Journal ArticleDOI
TL;DR: There is a persistent interest in extending cosmology beyond the standard model, $\Lambda$CDM as discussed by the authors, motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm.
Abstract: Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, $\Lambda$CDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of $\Lambda$CDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.

355 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a framework for forecasting cosmological constraints from future neutral hydrogen intensity mapping experiments at low to intermediate redshifts, and establish a simple way of comparing such surveys with optical galaxy redshift surveys.
Abstract: We present a framework for forecasting cosmological constraints from future neutral hydrogen intensity mapping experiments at low to intermediate redshifts. In the process, we establish a simple way of comparing such surveys with optical galaxy redshift surveys. We explore a wide range of experimental configurations and assess how well a number of cosmological observables (the expansion rate, growth rate, and angular diameter distance) and parameters (the densities of dark energy and dark matter, spatial curvature, the dark energy equation of state, etc.) will be measured by an extensive roster of upcoming experiments. A number of potential contaminants and systematic effects are also studied in detail. The overall picture is encouraging?if autocorrelation calibration can be controlled to a sufficient level, Phase I of the Square Kilometre Array should be able to constrain the dark energy equation of state about as well as a DETF Stage IV galaxy redshift survey like Euclid, in roughly the same time frame.

347 citations

Journal ArticleDOI
TL;DR: A detailed overview of the cosmological surveys that will be carried out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable can be found in this article.
Abstract: We present a detailed overview of the cosmological surveys that will be carried out with Phase 1 of the Square Kilometre Array (SKA1), and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5,000 sqdeg; a wide and deep continuum galaxy and HI intensity mapping survey over 20,000 sqdeg from z = 0.35 - 3; and a deep, high-redshift HI intensity mapping survey over 100 sqdeg from z = 3 - 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to z ~ 3 with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to z = 6. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical surveys like LSST and Euclid, leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys, and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.

226 citations

Journal ArticleDOI
TL;DR: The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope as mentioned in this paper.
Abstract: The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope. The SKA will address many important topics in astronomy, ranging from planet formation to distant galaxies. However, in this work, we consider the perspective of the SKA as a facility for studying physics. We review four areas in which the SKA is expected to make major contributions to our understanding of fundamental physics: cosmic dawn and reionisation; gravity and gravitational radiation; cosmology and dark energy; and dark matter and astroparticle physics. These discussions demonstrate that the SKA will be a spectacular physics machine, which will provide many new breakthroughs and novel insights on matter, energy, and spacetime.

223 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
01 Dec 1949-Nature
TL;DR: Wentzel and Jauch as discussed by the authors described the symmetrization of the energy momentum tensor according to the Belinfante Quantum Theory of Fields (BQF).
Abstract: To say that this is the best book on the quantum theory of fields is no praise, since to my knowledge it is the only book on this subject But it is a very good and most useful book The original was written in German and appeared in 1942 This is a translation with some minor changes A few remarks have been added, concerning meson theory and nuclear forces, also footnotes referring to modern work in this field, and finally an appendix on the symmetrization of the energy momentum tensor according to Belinfante Quantum Theory of Fields Prof Gregor Wentzel Translated from the German by Charlotte Houtermans and J M Jauch Pp ix + 224, (New York and London: Interscience Publishers, Inc, 1949) 36s

2,935 citations