scispace - formally typeset
Search or ask a question
Author

Philip C. Brookes

Bio: Philip C. Brookes is an academic researcher from Zhejiang University. The author has contributed to research in topics: Soil water & Soil organic matter. The author has an hindex of 84, co-authored 311 publications receiving 42635 citations. Previous affiliations of Philip C. Brookes include The Hertz Corporation & Rothamsted Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of fumigation on organic C extractable by 0.5 m K2SO4 were examined in a contrasting range of soils and it was shown that both ATP and organic C rendered decomposable by CHCl3 came from the soil microbial biomass.
Abstract: The effects of fumigation on organic C extractable by 0.5 M K2SO4 were examined in a contrasting range of soils. EC (the difference between organic C extracted by 0.5 M K2SO4 from fumigated and non-fumigated soil) was about 70% of FC (the flush of CO2-C caused by fumigation during a 10 day incubation), meaned for ten soils. There was a close relationship between microbial biomass C, measured by fumigation-incubation (from the relationship Biomass C = FC/0.45) and EC given by the equation: Biomass C = (2.64 ± 0.060) EC that accounted for 99.2% of the variance in the data. This relationship held over a wide range of soil pH (3.9–8.0). ATP and microbial biomass N concentrations were measured in four of the soils. The (ATP)(EC) ratios were very similar in the four soils, suggesting that both ATP and the organic C rendered decomposable by CHCl3 came from the soil microbial biomass. The C:N ratio of the biomass in a strongly acid (pH 4.2) soil was greater (9.4) than in the three less-acid soils (mean C:N ratio 5.1). We propose that the organic C rendered extractable to 0.5 m K2SO4 after a 24 h CHCl3-fumigation (EC) comes from the cells of the microbial biomass and can be used to estimate soil microbial biomass C in both neutral and acid soils.

9,975 citations

Journal ArticleDOI
TL;DR: In this paper, a direct extraction method for measuring soil microbial biomass nitrogen (biomass N) is described, which is based on CHC13 fumigation, followed by immediate extraction with 0.5 M K2SO4 and measurement of total N released by CHC 13 in the soil extracts.
Abstract: A new “direct extraction” method for measuring soil microbial biomass nitrogen (biomass N) is described. The new method (fumigation-extraction) is based on CHC13 fumigation, followed by immediate extraction with 0.5 M K2SO4 and measurement of total N released by CHC13 in the soil extracts. The amounts of NH4-N and total N extracted by K2SO4 immediately after fumigation increased with fumigation time up to 5 days. Total N released by CHC13 after 1 day fumigation (1 day CHC13-N) and after 5 days fumigation (5 day CHC13-N) were positively correlated with the flush of mineral N (FN) in 37 soils that had been fumigated, the fumigant removed and the soils incubated for 10 days (fumigation-incubation). The regression equations were 1 day CHC13-N = (0.79 ± 0.022) FN and 5 day CHC13-N = (1.01 ± 0.027) FN, both regressions accounting for 92% of the variance in the data. In field soils previously treated with 15N-labelled fertilizer, the amounts of labelled N, measured after fumigation-extraction, were very similar to the amounts of labelled N mineralized during fumigation-incubation; both were about 4 times as heavily labelled as the soil N as a whole. These results suggest that fumigation-extraction and fumigation-incubation both measure the same fraction of the soil organic N (probably the cytoplasmic component of the soil microbial biomass) and that measurement of the total N released by CHC13 fumigation for 24 h provides a rapid method for measuring biomass N.

4,631 citations

Journal ArticleDOI
TL;DR: Soils collected across a long-term liming experiment were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria, and both the relative abundance and diversity of bacteria were positively related to pH.
Abstract: Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth.

2,966 citations

Journal ArticleDOI
TL;DR: In this article, a method for measuring the amount of P held in soil micro-organisms (biomass P) is described and the assumptions on which it is based are discussed.
Abstract: A method for measuring the amount of P held in soil micro-organisms (biomass P) is described and the assumptions on which it is based are discussed. Biomass P is calculated from the difference between the amount of inorganic P (Pi) extracted by 0.5 (Spm) NaHCO3 (pH 8.5) from fresh soil fumigated with CHCl3 and the amount extracted from unfumigated soil. Some CHCl3-released Pi is sorbed by soil during fumigation and extraction: an approximate allowance for this is made by incorporating a known quantity of Pi during extraction and correcting for recovery. Most of the P released is in inorganic form and the proportion increases with duration of fumigation. Non-microbial P is little, if at all, affected by fumigation. Microbial biomass P is calculated from CHCl3-released Pi by dividing by 0.4, i.e. by assuming that 40% of the P in the biomass is rendered extractable as Pi by CHCl3. Measurements of biomass P must be done in fresh soil, CHCl3 releases much less P in air-dry soil.

1,297 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of fumigation on organic C extractable by 0.5 m K2SO4 were examined in a contrasting range of soils and it was shown that both ATP and organic C rendered decomposable by CHCl3 came from the soil microbial biomass.
Abstract: The effects of fumigation on organic C extractable by 0.5 M K2SO4 were examined in a contrasting range of soils. EC (the difference between organic C extracted by 0.5 M K2SO4 from fumigated and non-fumigated soil) was about 70% of FC (the flush of CO2-C caused by fumigation during a 10 day incubation), meaned for ten soils. There was a close relationship between microbial biomass C, measured by fumigation-incubation (from the relationship Biomass C = FC/0.45) and EC given by the equation: Biomass C = (2.64 ± 0.060) EC that accounted for 99.2% of the variance in the data. This relationship held over a wide range of soil pH (3.9–8.0). ATP and microbial biomass N concentrations were measured in four of the soils. The (ATP)(EC) ratios were very similar in the four soils, suggesting that both ATP and the organic C rendered decomposable by CHCl3 came from the soil microbial biomass. The C:N ratio of the biomass in a strongly acid (pH 4.2) soil was greater (9.4) than in the three less-acid soils (mean C:N ratio 5.1). We propose that the organic C rendered extractable to 0.5 m K2SO4 after a 24 h CHCl3-fumigation (EC) comes from the cells of the microbial biomass and can be used to estimate soil microbial biomass C in both neutral and acid soils.

9,975 citations

Journal ArticleDOI
TL;DR: In this article, a review of the available scientific information, they are confident that nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N emissions from fossil fuel burning, but rates of recovery are highly variable among water bodies.
Abstract: Agriculture and urban activities are major sources of phosphorus and nitrogen to aquatic ecosystems. Atmospheric deposition further contributes as a source of N. These nonpoint inputs of nutrients are difficult to measure and regulate because they derive from activities dispersed over wide areas of land and are variable in time due to effects of weather. In aquatic ecosystems, these nutrients cause diverse problems such as toxic algal blooms, loss of oxygen, fish kills, loss of biodiversity (including species important for commerce and recreation), loss of aquatic plant beds and coral reefs, and other problems. Nutrient enrichment seriously degrades aquatic ecosystems and impairs the use of water for drinking, industry, agriculture, recreation, and other purposes. Based on our review of the scientific literature, we are certain that (1) eutrophication is a widespread problem in rivers, lakes, estuaries, and coastal oceans, caused by overenrichment with P and N; (2) nonpoint pollution, a major source of P and N to surface waters of the United States, results primarily from agriculture and urban activity, including industry; (3) inputs of P and N to agriculture in the form of fertilizers exceed outputs in produce in the United States and many other nations; (4) nutrient flows to aquatic ecosystems are directly related to animal stocking densities, and under high livestock densities, manure production exceeds the needs of crops to which the manure is applied; (5) excess fertilization and manure production cause a P surplus to accumulate in soil, some of which is transported to aquatic ecosystems; and (6) excess fertilization and manure production on agricultural lands create surplus N, which is mobile in many soils and often leaches to downstream aquatic ecosystems, and which can also volatilize to the atmosphere, redepositing elsewhere and eventually reaching aquatic ecosystems. If current practices continue, nonpoint pollution of surface waters is virtually certain to increase in the future. Such an outcome is not inevitable, however, because a number of technologies, land use practices, and conservation measures are capable of decreasing the flow of nonpoint P and N into surface waters. From our review of the available scientific information, we are confident that: (1) nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N emissions from fossil fuel burning; and (2) eutrophication can be reversed by decreasing input rates of P and N to aquatic ecosystems, but rates of recovery are highly variable among water bodies. Often, the eutrophic state is persistent, and recovery is slow.

5,662 citations

Journal ArticleDOI
TL;DR: In this paper, a direct extraction method for measuring soil microbial biomass nitrogen (biomass N) is described, which is based on CHC13 fumigation, followed by immediate extraction with 0.5 M K2SO4 and measurement of total N released by CHC 13 in the soil extracts.
Abstract: A new “direct extraction” method for measuring soil microbial biomass nitrogen (biomass N) is described. The new method (fumigation-extraction) is based on CHC13 fumigation, followed by immediate extraction with 0.5 M K2SO4 and measurement of total N released by CHC13 in the soil extracts. The amounts of NH4-N and total N extracted by K2SO4 immediately after fumigation increased with fumigation time up to 5 days. Total N released by CHC13 after 1 day fumigation (1 day CHC13-N) and after 5 days fumigation (5 day CHC13-N) were positively correlated with the flush of mineral N (FN) in 37 soils that had been fumigated, the fumigant removed and the soils incubated for 10 days (fumigation-incubation). The regression equations were 1 day CHC13-N = (0.79 ± 0.022) FN and 5 day CHC13-N = (1.01 ± 0.027) FN, both regressions accounting for 92% of the variance in the data. In field soils previously treated with 15N-labelled fertilizer, the amounts of labelled N, measured after fumigation-extraction, were very similar to the amounts of labelled N mineralized during fumigation-incubation; both were about 4 times as heavily labelled as the soil N as a whole. These results suggest that fumigation-extraction and fumigation-incubation both measure the same fraction of the soil organic N (probably the cytoplasmic component of the soil microbial biomass) and that measurement of the total N released by CHC13 fumigation for 24 h provides a rapid method for measuring biomass N.

4,631 citations

Journal ArticleDOI
TL;DR: A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins as mentioned in this paper.
Abstract: Soil amendment with biochar is evaluated globally as a means to improve soil fertility and to mitigate climate change. However, the effects of biochar on soil biota have received much less attention than its effects on soil chemical properties. A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins. However, no studies exist in the soil biologyliterature that recognize the observed largevariations ofbiochar physico-chemical properties. This shortcoming has hampered insight into mechanisms by which biochar influences soil microorganisms, fauna and plant roots. Additional factors limiting meaningful interpretation of many datasets are the clearly demonstrated sorption properties that interfere with standard extraction procedures for soil microbial biomass or enzyme assays, and the confounding effects of varying amounts of minerals. In most studies, microbial biomass has been found to increase as a result of biochar additions, with significant changes in microbial community composition and enzyme activities that may explain biogeochemical effects of biochar on element cycles, plant pathogens, and crop growth. Yet, very little is known about the mechanisms through which biochar affects microbial abundance and community composition. The effects of biochar on soil fauna are even less understood than its effects on microorganisms, apart from several notable studies on earthworms. It is clear, however, that sorption phenomena, pH and physical properties of biochars such as pore structure, surface area and mineral matter play important roles in determining how different biochars affect soil biota. Observations on microbial dynamics lead to the conclusion of a possible improved resource use due to co-location of various resources in and around biochars. Sorption and therebyinactivation of growth-inhibiting substances likelyplaysa rolefor increased abundance of soil biota. No evidence exists so far for direct negative effects of biochars on plant roots. Occasionally observed decreases in abundance of mycorrhizal fungi are likely caused by concomitant increases in nutrient availability,reducing theneedfor symbionts.Inthe shortterm,therelease ofavarietyoforganic molecules from fresh biochar may in some cases be responsible for increases or decreases in abundance and activity of soil biota. A road map for future biochar research must include a systematic appreciation of different biochar-types and basic manipulative experiments that unambiguously identify the interactions between biochar and soil biota.

3,612 citations