scispace - formally typeset
Search or ask a question
Author

Philip England

Bio: Philip England is an academic researcher from University of Oxford. The author has contributed to research in topics: Lithosphere & Slip (materials science). The author has an hindex of 70, co-authored 134 publications receiving 20430 citations. Previous affiliations of Philip England include University of Cambridge & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: For example, Hou et al. as mentioned in this paper show that a small increase in the mean elevation of the Tibetan Plateau of 1000 m or more in a few million years is required by abrupt tectonic and environmental changes in Asia and the Indian Ocean.
Abstract: Convective removal of lower lithosphere beneath the Tibetan Plateau can account for a rapid increase in the mean elevation of the Tibetan Plateau of 1000 m or more in a few million years. Such uplift seems to be required by abrupt tectonic and environmental changes in Asia and the Indian Ocean in late Cenozoic time. The composition of basaltic volcanism in northern Tibet, which apparently began at about 13 Ma, implies melting of lithosphere, not asthenosphere. The most plausible mechanism for rapid heat transfer to the midlithosphere is by convective removal of deeper lithosphere and its replacement by hotter asthenosphere. The initiation of normal faulting in Tibet at about 8 (± 3) Ma suggests that the plateau underwent an appreciable increase in elevation at that time. An increase due solely to the isostatic response to crustal thickening caused by India's penetration into Eurasia should have been slow and could not have triggered normal faulting. Another process, such as removal of relatively cold, dense lower lithosphere, must have caused a supplemental uplift of the surface. Folding and faulting of the Indo-Australian plate south of India, the most prominent oceanic intraplate deformation on Earth, began between about 7.5 and 8 Ma and indicates an increased north-south compressional stress within the Indo-Australian plate. A Tibetan uplift of only 1000 m, if the result of removal of lower lithosphere, should have increased the compressional stress that the plateau applies to India and that resists India's northward movement, from an amount too small to fold oceanic lithosphere, to one sufficient to do so. The climate of the equatorial Indian Ocean and southern Asia changed at about 6–9 Ma: monsoonal winds apparently strengthened, northern Pakistan became more arid, but weathering of rock in the eastern Himalaya apparently increased. Because of its high altitude and lateral extent, the Tibetan Plateau provides a heat source at midlatitudes that should oppose classical (symmetric) Hadley circulation between the equator and temperate latitudes and that should help to drive an essentially opposite circulation characteristic of summer monsoons. For the simple case of axisymmetric heating (no dependence on longitude) of an atmosphere without dissipation, theoretical analyses by Hou, Lindzen, and Plumb show that an axisymmetric heat source displaced from the equator can drive a much stronger meridianal (monsoonlike) circulation than such a source centered on the equator, but only if heating exceeds a threshold whose level increases with the latitude of the heat source. Because heating of the atmosphere over Tibet should increase monotonically with elevation of the plateau, a modest uplift (1000–2500 m) of Tibet, already of substantial extent and height, might have been sufficient to exceed a threshold necessary for a strong monsoon. The virtual simultaneity of these phenomena suggests that uplift was rapid: approximately 1000 m to 2500 m in a few million years. Moreover, nearly simultaneously with the late Miocene strengthening of the monsoon, the calcite compensation depth in the oceans dropped, plants using the relatively efficient C4 pathway for photosynthesis evolved rapidly, and atmospheric CO2 seems to have decreased, suggesting causal relationships and positive feedbacks among these phenomena. Both a supplemental uplift of the Himalaya, the southern edge of Tibet, and a strengthened monsoon may have accelerated erosion and weathering of silicate rock in the Himalaya that, in turn, enhanced extraction of CO2 from the atmosphere. Thus these correlations offer some support for links between plateau uplift, a downdrawing of CO2 from the atmosphere, and global climate change, as proposed by Raymo, Ruddiman, and Froehlich. Mantle dynamics beneath mountain belts not only may profoundly affect tectonic processes near and far from the belts, but might also play an important role in altering regional and global climates.

1,753 citations

Journal ArticleDOI
TL;DR: In this article, the development of regional metamorphism in areas of thickened continental crust is investigated in terms of the major controls on regional-scale thermal regimes, such as the total radiogenic heat supply within the thickened crust, the supply of heat from the mantle, the thermal conductivity of the medium and the length and time scales of erosion of the continental crust.
Abstract: The development of regional metamorphism in areas of thickened continental crust is investigated in terms of the major controls on regional-scale thermal regimes. These are: the total radiogenic heat supply within the thickened crust, the supply of heat from the mantle, the thermal conductivity of the medium and the length and time scales of erosion of the continental crust. The orogenic episode is regarded as consisting of a relatively rapid phase of crustal thickening, during which little temperature change occurs in individual rocks, followed by a lengthier phase of erosion, at the end of which the crust is at its original thickness. The principal features of pressure-temperature-time (PTt) paths followed by rocks in this environment are a period of thermal relaxation, during which the temperature rises towards the higher geotherm that would be supported by the thickened crust, followed by a period of cooling as the rock approaches the cold land surface. The temperature increase that occurs is governed by the degree of thickening of the crust, its conductivity and the time that elapses before the rock is exhumed sufficiently to be affected by the proximity of the cold upper boundary. For much of the parameter range considered, the heating phase encompasses a considerable portion of the exhumation (decompression) part of the PTt path. In addition to the detailed calculation of PTt paths we present an idealized model of the thickening and exhumation process, which may be used to make simple calculations of the amount of heating to be expected during a given thickening and exhumation episode and of the depth at which a rock will start to cool on its ascent path. An important feature of these PTt paths is that most of them lie within 50 °C of the maximum temperature attained for one third or more of the total duration of their burial and uplift, and for a geologically plausible range of erosion rates the rocks do not begin to cool until they have completed 20 to 40 per cent of the total uplift they experience. Considerable melting of the continental crust is a likely consequence of thickening of crust with an average continental geotherm. A companion paper discusses these results in the context of attempts to use metamorphic petrology data to give information on tectonic processes. © 1984 Oxford University Press.

1,576 citations

Journal ArticleDOI
05 Jul 1990-Nature
TL;DR: The high altitude of most mountain ranges have commonly been ascribed to late Cenozoic uplift, without reference to when crustal thickening and other tectonic processes occurred as mentioned in this paper.
Abstract: The high altitudes of most mountain ranges have commonly been ascribed to late Cenozoic uplift, without reference to when crustal thickening and other tectonic processes occurred. Deep incision and recent denudation of these mountain ranges, abundant late Cenozoic coarse sediment near them, and palaeobotanical evidence for warmer climates, where high mountain climates today are relatively cold, have traditionally been interpreted as evidence for recent uplift. An alternative cause of these phenomena is late Cenozoic global climate change: towards lower temperatures, increased alpine glaciation, a stormier climate, and perturbations to humidity, vegetative cover and precipitation.

1,393 citations

Journal ArticleDOI
TL;DR: In this article, a thin viscous sheet model for deformation of continental lithosphere subjected to an indenting boundary condition yield distributions of crustal thickness, of stress and strain rate, and of latitudinal displacements that may be compared with observations in the India-Asia collision zone.
Abstract: Numerical experiments on a thin viscous sheet model for deformation of continental lithosphere subjected to an indenting boundary condition yield distributions of crustal thickness, of stress and strain rate, and of latitudinal displacements that may be compared with observations in the India-Asia collision zone. A simple indenting boundary condition applied to initially laterally homogeneous sheets obeying a power law rheology produces results that are in broad agreement with the observations, provided that the power law exponent is three or greater and the sheet can support vertically integrated stress differences of 2×1013 (±5 × 1012) N m−1 in regions in front of the indenter. Under these conditions, the calculated deformation shows accommodation of convergence primarily by crustal thickening, to produce a plateau in front of the indenter. Palaeomagnetic data from India and Tibet, and the observed distribution of topography, suggest that much of the post-Eocene convergence of India with Asia has been taken up by deformation within Asia that involved crustal thickening. The principal difference between calculation and observation is the absence from the calculated strain rate fields of east-west extension of the plateau in front of the indenting boundary. The calculations show that once such a plateau is formed, the buoyancy force associated with the crustal thickness contrast inhibits further thickening and the plateau strains at less than half the rate of its immediate surroundings. Seismically determined regional strain rates exhibit a similar distribution, with the Tibetan plateau straining at about one quarter the rate of the Tien Shan and Ningxia-Gansu regions. Calculated principal compressive stress orientations and regional strain rates agree with the seismically determined quantities in the Mongolia-Baikal, Tien Shan, Tibet, and Ningxia-Gansu regions of Asia, to within the uncertainty of the latter. The vertically integrated stresses that are calculated for the viscous sheet are comparable with those that can be supported by a Theologically stratified continental lithosphere obeying laboratory-determined flow laws. We suggest that the thin viscous sheet model, described in this paper and its companion, gives a simple and physically plausible description of the observed deformation in central Asia; in this description the predominant mechanism of accommodation of continental convergence is diffuse crustal thickening, with shear on vertical planes playing a subsidiary role once large crustal thickness contrasts have been established.

993 citations

Journal ArticleDOI
TL;DR: In this paper, an explanation in terms of the thermal evolution of thickened continental lithosphere is offered to explain the transition from north-south compression to east-west extension in the strain rate field of the Tibetan Plateau.
Abstract: An explanation in terms of the thermal evolution of thickened continental lithosphere is offered to explain the transition, in the late Tertiary to Quaternary, from north-south compression to east-west extension in the strain rate field of the Tibetan Plateau. The lower part of the lithosphere consists of a thermal boundary layer which, when thickened by horizontal shortening, is colder and denser than its surroundings. Convective instability of the thickened thermal boundary layer and its replacement by hot asthenosphere would rapidly raise the surface elevation and gravitational potential energy of the overlying part of the lithosphere. The convective instability would happen in a time brief compared with the collision time scale but would only occur after there had already been substantial thickening of the lithosphere. The increase in surface height and of potential energy are sufficient for east-west extension to replace north-south compression as the dominant feature of the stress field.

941 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a data bank containing over 600 high quality trace element analyses of granites from known settings was used to demonstrate using ORG-normalized geochemical patterns and element-SiO2 plots that most of these granite groups exhibit distinctive trace element characteristics.
Abstract: Granites may be subdivided according to their intrusive settings into four main groups—ocean ridge granites (ORG), volcanic arc granites (VAG), within plate granites (WPG) and collision granites (COLG)—and the granites within each group may be further subdivided according to their precise settings and petrological characteristics. Using a data bank containing over 600 high quality trace element analyses of granites from known settings, it can be demonstrated using ORG-normalized geochemical patterns and element-SiO2 plots that most of these granite groups exhibit distinctive trace element characteristics. Discrimination of ORG, VAG, WPG and syn-COLG is most effective in Rb-Y-Nb and Rb-Yb-Ta space, particularly on projections of Y-Nb, Yb-Ta, Rb-(Y + Nb) and Rb—(Yb + Ta). Discrimination boundaries, though drawn empirically, can be shown by geochemical modelling to have a theoretical basis in the different petrogenetic histories of the various granite groups. Post-collision granites present the main problem of tectonic classification, since their characteristics depend on the thickness and composition of the lithosphere involved in the collision event and on the precise timing and location of magmatism. Provided they are coupled with a consideration of geological constraints, however, studies of trace element compositions in granites can clearly help in theelucidation of post-Archaean tectonic settings.

7,144 citations

Journal ArticleDOI
TL;DR: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma as discussed by the authors.
Abstract: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma. Significant crustal shortening, which leads to eventual construction of the Cenozoic Tibetan plateau, began more or less synchronously in the Eocene (50–40 Ma) in the Tethyan Himalaya in the south, and in the Kunlun Shan and the Qilian Shan some 1000–1400 km in the north. The Paleozoic and Mesozoic tectonic histories in the Himalayan-Tibetan orogen exerted a strong control over the Cenozoic strain history and strain distribution. The presence of widespread Triassic flysch complex in the Songpan-Ganzi-Hoh Xil and the Qiangtang terranes can be spatially correlated with Cenozoic volcanism and thrusting in central Tibet. The marked difference in seismic properties of the crust and the upper mantle between southern and central Tibet is a manifestation of both Mesozoic and Cenozoic tectonics. The form...

4,494 citations

Book
25 Jan 1991
TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Abstract: This essential reference for graduate students and researchers provides a unified treatment of earthquakes and faulting as two aspects of brittle tectonics at different timescales. The intimate connection between the two is manifested in their scaling laws and populations, which evolve from fracture growth and interactions between fractures. The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws - producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events. The third edition of this classic treatise presents a wealth of new topics and new observations. These include slow earthquake phenomena; friction of phyllosilicates, and at high sliding velocities; fault structures; relative roles of strong and seismogenic versus weak and creeping faults; dynamic triggering of earthquakes; oceanic earthquakes; megathrust earthquakes in subduction zones; deep earthquakes; and new observations of earthquake precursory phenomena.

3,802 citations

Journal ArticleDOI
TL;DR: Barbarin et al. as mentioned in this paper used the modified alkali-lime index (MALI) and the aluminum saturation (ASI) for the classification of caledonian post-orogenic granites.
Abstract: This geochemical classification of granitic rocks is based upon three INTRODUCTION variables. These are FeO/(FeO + MgO) = Fe-number [or Although granitoids are the most abundant rock types FeO/(FeO + MgO) = Fe∗], the modified alkali–lime index in the continental crust, no single classification scheme (MALI) (Na2O + K2O – CaO) and the aluminum saturation has achieved widespread use. Part of the problem in index (ASI) [Al/(Ca – 1·67P + Na + K)]. The Fe-number granite classification is that the same mineral assemblage, (or Fe∗) distinguishes ferroan granitoids, which manifest strong iron quartz and feldspars with a variety of ferromagnesian enrichment, from magnesian granitoids, which do not. The ferroan minerals, can be achieved by a number of processes. and magnesian granitoids can further be classified into alkalic, Granitoids can form from differentiation of any hyalkali–calcic, calc-alkalic, and calcic on the basis of the MALI persthene-normative melt and from partial melting of and subdivided on the basis of the ASI into peraluminous, metamany rock types. Furthermore, granitic melts may be luminous or peralkaline. Because alkalic rocks are not likely to be derived solely from crustal components, may form from peraluminous and calcic and calc-alkalic rocks are not likely to be evolved mantle-derived melts, or may be a mixture peralkaline, this classification leads to 16 possible groups of granitic of crustal and mantle-derived melts. Because of this rocks. In this classification most Cordilleran granitoids are magnesian complexity, petrologists have relied upon geochemical and calc-alkalic or calcic; both metaluminous and peraluminous classifications to distinguish between various types of types are present. A-type granitoids are ferroan alkali–calcic, although granitoids. Approximately 20 different schemes have evolved over the past 30 years [see Barbarin (1990, 1999) some are ferroan alkalic. Most are metaluminous although some are for a summary thereof]. Most of these schemes are either peraluminous. Caledonian post-orogenic granites are predominantly genetic or tectonic in nature. This paper is an attempt magnesian alkali–calcic. Those with <70 wt % SiO2 are domto present a non-genetic, non-tectonic geochemical clasinantly metaluminous, whereas more silica-rich varieties are comsification scheme that incorporates the best qualities of monly peraluminous. Peraluminous leucogranites may be either the previous schemes, and to explain the petrologic magnesian or ferroan and have a MALI that ranges from calcic to processes that makes this scheme work. alkalic.

3,135 citations

Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations