scispace - formally typeset
Search or ask a question
Author

Philip G. Judge

Bio: Philip G. Judge is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Chromosphere & Corona. The author has an hindex of 14, co-authored 44 publications receiving 553 citations. Previous affiliations of Philip G. Judge include University Corporation for Atmospheric Research.
Topics: Chromosphere, Corona, Photosphere, Flare, Coronal loop

Papers
More filters
Journal ArticleDOI
TL;DR: The relationship between observed structures in the solar atmosphere and the magnetic fields threading them is known only for the solar photosphere, even then imprecisely. as mentioned in this paper suggested that some of the fine structures in more tenuous chromosphere and corona (specifically some populations of spicules and fibrils) correspond to warps in two-dimensional sheet-like structures.
Abstract: The relationship between observed structures in the solar atmosphere and the magnetic fields threading them is known only for the solar photosphere, even then imprecisely. We suggest that some of the fine structures in the more tenuous chromosphere and corona—specifically some populations of spicules and fibrils—correspond to warps in two-dimensional sheet-like structures, as an alternative to conventional interpretations in terms of tube-like structures. The sheets are perhaps related to magnetic tangential discontinuities, which Parker has argued arise naturally in low-β conditions. Some consequences of this suggestion, if it can be confirmed, are discussed.

56 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the amplitude of the irradiance variations from the point of view of both solar and stellar data and found that the Sun would still lie within the distribution of stellar photometric variations measured over a 10−20 year period.
Abstract: Context. A recent paper by Shapiro and colleagues (2011, A&A, 529, A67) reconstructs spectral and total irradiance variations of the Sun during the holocene. Aims. In this note, we comment on why their methodology leads to large (0.5%) variations in the solar TSI on century-long time scales, in stark contrast to other reconstructions which have ≲ 0.1% variations.Methods. We examine the amplitude of the irradiance variations from the point of view of both solar and stellar data.Results. Shapiro et al.’s large amplitudes arise from differences between the irradiances computed from models A and C of Fontenla and colleagues, and from their explicit assumption that the radiances of the quiet Sun vary with the cosmic ray modulation potential. We suggest that the upper photosphere, as given by model A, is too cool, and discuss relative contributions of local vs. global dynamos to the magnetism and irradiance of the quiet Sun. We compare the slow (>22 yr) components of the irradiance reconstructions with secular changes in stellar photometric data that span 20 years or less, and find that the Sun, if varying with such large amplitudes, would still lie within the distribution of stellar photometric variations measured over a 10−20 year period. However, the stellar time series are individually too short to see if the reconstructed variations will remain consistent with stellar variations when observed for several decades more.Conclusions. By adopting model A, Shapiro et al. have over-estimated quiet-Sun irradiance variations by about a factor of two, based upon a re-analysis of sub-mm data from the James Clerk Maxwell telescope. But both estimates are within bounds set by current stellar data. It is therefore vital to continue accurate photometry of solar-like stars for at least another decade, to reveal secular and cyclic variations on multi-decadal time scales of direct interest to the Sun.

44 citations

Journal ArticleDOI
TL;DR: In this article, the authors present formal solutions to the transfer equation for given (ad hoc) source functions, including a stratified chromosphere from which spicules emanate.
Abstract: Broadband images in the Ca II H line, from the Broadband Filter Imager (BFI) instrument on the Hinode spacecraft, show emission from spicules emerging from and visible right down to the observed limb. Surprisingly, little absorption of spicule light is seen along their lengths. We present formal solutions to the transfer equation for given (ad hoc) source functions, including a stratified chromosphere from which spicules emanate. The model parameters are broadly compatible with earlier studies of spicules. The visibility of Ca II spicules down to the limb in Hinode data seems to require that spicule emission be Doppler shifted relative to the stratified atmosphere, either by supersonic turbulent or organized spicular motion. The non-spicule component of the chromosphere is almost invisible in the broadband BFI data, but we predict that it will be clearly visible in high spectral resolution data. Broadband Ca II H limb images give the false impression that the chromosphere is dominated by spicules. Our analysis serves as a reminder that the absence of a signature can be as significant as its presence.

43 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the hypothesis that plasma associated with Type II spicules is heated to coronal temperatures, and that the upward moving hot plasma constitutes a significant mass supply to the solar corona.
Abstract: We examine the hypothesis that plasma associated with 'Type II' spicules is heated to coronal temperatures, and that the upward moving hot plasma constitutes a significant mass supply to the solar corona. One-dimensional hydrodynamical models including time-dependent ionization are brought to bear on the problem. These calculations indicate that heating of field-aligned spicule flows should produce significant differential Doppler shifts between emission lines formed in the chromosphere, transition region, and corona. At present, observational evidence for the computed 60-90 km s{sup -1} differential shifts is weak, but the data are limited by difficulties in comparing the proper motion of Type II spicules with spectral and kinematic properties of an associated transition region and coronal emission lines. Future observations with the upcoming infrared interferometer spectrometer instrument should clarify if Doppler shifts are consistent with the dynamics modeled here.

39 citations

Journal ArticleDOI
TL;DR: In this paper, a unique combination of spectropolarimetry and stereoscopy was used to infer and compare the vector magnetic field structure and three-dimensional morphology of an individuated coronal loop structure undergoing a thermal instability.
Abstract: The variation of the vector magnetic field along structures in the solar corona remains unmeasured. Using a unique combination of spectropolarimetry and stereoscopy, we infer and compare the vector magnetic field structure and three-dimensional morphology of an individuated coronal loop structure undergoing a thermal instability. We analyze spectropolarimetric data of the He I 10830 {\AA} triplet ($1s2s{\ }^{3}S_{1} - 1s2p{\ }^{3}P_{2,1,0}$) obtained at the Dunn Solar Telescope with the Facility Infrared Spectropolarimeter on 19 September 2011. Cool coronal loops are identified by their prominent drainage signatures in the He I data (redshifts up to 185 km sec$^{-1}$). Extinction of EUV background radiation along these loops is observed by both the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory and the Extreme Ultraviolet Imager onboard spacecraft A of the Solar Terrestrial Relations Observatory, and is used to stereoscopically triangulate the loop geometry up to heights of 70 Mm ($0.1$ $R_{sun}$) above the solar surface. The He I polarized spectra along this loop exhibit signatures indicative of atomic-level polarization as well as magnetic signatures through the Hanle and Zeeman effects. Spectropolarimetric inversions indicate that the magnetic field is generally oriented along the coronal loop axis, and provide the height dependence of the magnetic field intensity. The technique we demonstrate is a powerful one that may help better understand the thermodynamics of coronal fine structure magnetism.

38 citations


Cited by
More filters
01 Dec 2007
TL;DR: An estimate of the energy carried by the waves that are spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfvén waves may carry sufficient energy.
Abstract: Alfven waves, transverse incompressible magnetic oscillations, have been proposed as a possible mechanism to heat the Sun's corona to millions of degrees by transporting convective energy from the photosphere into the diffuse corona. We report the detection of Alfven waves in intensity, line-of-sight velocity, and linear polarization images of the solar corona taken using the FeXIII 1074.7-nanometer coronal emission line with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico. Ubiquitous upward propagating waves were seen, with phase speeds of 1 to 4 megameters per second and trajectories consistent with the direction of the magnetic field inferred from the linear polarization measurements. An estimate of the energy carried by the waves that we spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfven waves may carry sufficient energy.

562 citations

Journal ArticleDOI
17 Oct 2014-Science
TL;DR: In this article, the authors used the Interface Region Imaging Spectrograph (IRIS) to detect small-scale jets with speeds of 80 to 250 kilometers per second from the narrow bright network lanes of this interface region.
Abstract: As the interface between the Sun's photosphere and corona, the chromosphere and transition region play a key role in the formation and acceleration of the solar wind. Observations from the Interface Region Imaging Spectrograph reveal the prevalence of intermittent small-scale jets with speeds of 80 to 250 kilometers per second from the narrow bright network lanes of this interface region. These jets have lifetimes of 20 to 80 seconds and widths of ≤300 kilometers. They originate from small-scale bright regions, often preceded by footpoint brightenings and accompanied by transverse waves with amplitudes of ~20 kilometers per second. Many jets reach temperatures of at least ~10(5) kelvin and constitute an important element of the transition region structures. They are likely an intermittent but persistent source of mass and energy for the solar wind.

316 citations

Journal ArticleDOI
TL;DR: In this article, a review of coronal loops is presented, with a focus on loops mostly as structures confining plasma, and a brief discussion about stellar X-ray emitting structures related to coronal loop structures.
Abstract: Coronal loops are the building blocks of the X-ray bright solar corona. They owe their brightness to the dense confined plasma, and this review focuses on loops mostly as structures confining plasma. After a brief historical overview, the review is divided into two separate but not independent parts: the first illustrates the observational framework, the second reviews the theoretical knowledge. Quiescent loops and their confined plasma are considered, and therefore topics such as loop oscillations and flaring loops (except for non-solar ones which provide information on stellar loops) are not specifically addressed here. The observational section discusses loop classification and populations, and then describes the morphology of coronal loops, its relationship with the magnetic field, and the concept of loops as multi-stranded structures. The following part of this section is devoted to the characteristics of the loop plasma and of its thermal structure in particular, according to the classification into hot, warm, and cool loops. Then, temporal analyses of loops and the observations of plasma dynamics and flows are illustrated. In the modeling section some basics of loop physics are provided, supplying some fundamental scaling laws and timescales, a useful tool for consultation. The concept of loop modeling is introduced and models are distinguished between those treating loops as monolithic and static, and those resolving loops into thin and dynamic strands. Then, more specific discussions address modeling the loop fine structure and the plasma flowing along the loops. Special attention is devoted to the question of loop heating, with separate discussion of wave (AC) and impulsive (DC) heating. Finally, a brief discussion about stellar X-ray emitting structures related to coronal loops is included and followed by conclusions and open questions.

277 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a new climate data record for total solar irradiance and solar spectral irradiance between 1610 and the present day with associated wavelength and time-dependent uncertainties and quarterly updates.
Abstract: We present a new climate data record for total solar irradiance and solar spectral irradiance between 1610 and the present day with associated wavelength and time-dependent uncertainties and quarterly updates. The data record, which is part of the National Oceanic and Atmospheric Administration’s (NOAA) Climate Data Record (CDR) program, provides a robust, sustainable, and scientifically defensible record of solar irradiance that is of sufficient length, consistency, and continuity for use in studies of climate variability and climate change on multiple time scales and for user groups spanning climate modeling, remote sensing, and natural resource and renewable energy industries. The data record, jointly developed by the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) and the Naval Research Laboratory (NRL), is constructed from solar irradiance models that determine the changes with respect to quiet sun conditions when facular brightening and sunspot darkening features...

263 citations

Journal ArticleDOI
TL;DR: The main drivers of solar variability are thought to be magnetic features at the solar surface as mentioned in this paper, and the amplitudes of such variations depend on the wavelength and possibly the timescale.
Abstract: The brightness of the Sun varies on all timescales on which it has been observed, and there is increasing evidence that this has an influence on climate. The amplitudes of such variations depend on the wavelength and possibly the timescale. Although many aspects of this variability are well established, the exact magnitude of secular variations (going beyond a solar cycle) and the spectral dependence of variations are under discussion. The main drivers of solar variability are thought to be magnetic features at the solar surface. The climate response can be, on a global scale, largely accounted for by simple energetic considerations, but understanding the regional climate effects is more difficult. Promising mechanisms for such a driving have been identified, including through the influence of UV irradiance on the stratosphere and dynamical coupling to the surface. Here, we provide an overview of the current state of our knowledge, as well as of the main open questions.

254 citations