scispace - formally typeset
Search or ask a question
Author

Philip J. Brooks

Other affiliations: Rockefeller University
Bio: Philip J. Brooks is an academic researcher from National Institutes of Health. The author has contributed to research in topics: DNA repair & Nucleotide excision repair. The author has an hindex of 32, co-authored 65 publications receiving 3579 citations. Previous affiliations of Philip J. Brooks include Rockefeller University.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence linking the alcohol flushing response (predominantly due to ALDH2 deficiency) with a much higher risk of esophageal cancer from alcohol consumption is discussed.
Abstract: Philip Brooks and colleagues discuss evidence linking the alcohol flushing response (predominantly due to ALDH2 deficiency) with a much higher risk of esophageal cancer from alcohol consumption.

377 citations

Journal ArticleDOI
01 Apr 2005-Alcohol
TL;DR: Inherited variation in the genes encoding the proteins involved in the repair of PdG and its secondary adducts may contribute to susceptibility to alcoholic beverage-related carcinogenesis.

327 citations

01 Dec 2010

292 citations

Journal ArticleDOI
TL;DR: It is proposed that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP and is a strong block to gene expression in CHO and human cells.

278 citations

Journal ArticleDOI
TL;DR: The goal of this review is to integrate recent results from the fields of mutagenesis and DNA repair with the alcohol toxicity literature, with the aim of stimulating research into the role of DNA damage in different types of alcohol toxicity and therole of DNA repair in protecting cells from alcohol-related damage.
Abstract: Alcohol (ethanol) is clearly a toxic substance when consumed in excess. Chronic alcohol abuse results in a variety of pathological effects, including damage to the liver and brain, as well as other organs, and is associated with an increased risk of certain types of cancers. Alcohol consumption by pregnant women can result in fetal alcohol effects and fetal alcohol syndrome. All of these toxic effects are well documented. What is needed at present is a complete understanding of the molecular mechanisms by which alcohol causes these toxic effects. Such an understanding may lead to better treatments of some of these toxic effects. This review, focuses on the possibility that toxic effects of ethanol are mediated, at least in part, by damage to DNA. In particular, I emphasize data on the production of endogenous DNA-damaging molecules as a result of alcohol consumption and metabolism. Specific examples of DNA-damaging molecules to be considered are reactive oxygen species, including oxygen radicals, lipid peroxidation products, and acetaldehyde. The relevant DNA repair pathways that protect cells against DNA damage produced by these molecules will also be reviewed. The goal of this review is to integrate recent results from the fields of mutagenesis and DNA repair with the alcohol toxicity literature, with the aim of stimulating research into the role of DNA damage in different types of alcohol toxicity and the role of DNA repair in protecting cells from alcohol-related damage.

183 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: In this review, the cellular oxidant and antioxidant systems are summarized and the cellular effects and mechanisms of the oxidative stress are discussed.

3,573 citations

Journal ArticleDOI
TL;DR: This review critically addresses the extent to which the in vitro significance of oxidative DNA damage has relevance for the pathogenesis of disease, drawing attention to the multiplicity of proteins with repair activities along with a number of poorly considered effects of damage.
Abstract: Oxidative DNA damage is an inevitable consequence of cellular metabolism, with a propensity for increased levels following toxic insult. Although more than 20 base lesions have been identified, only a fraction of these have received appreciable study, most notably 8-oxo-2'deoxyguanosine. This lesion has been the focus of intense research interest and been ascribed much importance, largely to the detriment of other lesions. The present work reviews the basis for the biological significance of oxidative DNA damage, drawing attention to the multiplicity of proteins with repair activities along with a number of poorly considered effects of damage. Given the plethora of (often contradictory) reports describing pathological conditions in which levels of oxidative DNA damage have been measured, this review critically addresses the extent to which the in vitro significance of such damage has relevance for the pathogenesis of disease. It is suggested that some shortcomings associated with biomarkers, along with gaps in our knowledge, may be responsible for the failure to produce consistent and definitive results when applied to understanding the role of DNA damage in disease, highlighting the need for further studies.

2,910 citations

25 May 2011
TL;DR: A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell.
Abstract: Metastasis, the dissemination and growth of neoplastic cells in an organ distinct from that in which they originated, is the most common cause of death in cancer patients. This is particularly true for pancreatic cancers, where most patients are diagnosed with metastatic disease and few show a sustained response to chemotherapy or radiation therapy. Whether the dismal prognosis of patients with pancreatic cancer compared to patients with other types of cancer is a result of late diagnosis or early dissemination of disease to distant organs is not known. Here we rely on data generated by sequencing the genomes of seven pancreatic cancer metastases to evaluate the clonal relationships among primary and metastatic cancers. We find that clonal populations that give rise to distant metastases are represented within the primary carcinoma, but these clones are genetically evolved from the original parental, non-metastatic clone. Thus, genetic heterogeneity of metastases reflects that within the primary carcinoma. A quantitative analysis of the timing of the genetic evolution of pancreatic cancer was performed, indicating at least a decade between the occurrence of the initiating mutation and the birth of the parental, non-metastatic founder cell. At least five more years are required for the acquisition of metastatic ability and patients die an average of two years thereafter. These data provide novel insights into the genetic features underlying pancreatic cancer progression and define a broad time window of opportunity for early detection to prevent deaths from metastatic disease.

2,019 citations

Journal ArticleDOI
TL;DR: Evidence that cancer and diseases of aging are two sides of the DNAdamage problem is presented, followed by an account of the derailment of genome guardian mechanisms in cancer and of how this cancerspecific phenomenon can be exploited for treatment.
Abstract: NA damage has emerged as a major culprit in cancer and many diseases related to aging. The stability of the genome is supported by an intricate machinery of repair, damage tolerance, and checkpoint pathways that counteracts DNA damage. In addition, DNA damage and other stresses can trigger a highly conserved, anticancer, antiaging survival response that suppresses metabolism and growth and boosts defenses that maintain the integrity of the cell. Induction of the survival response may allow interventions that improve health and extend the life span. Recently, the first candidate for such interventions, rapamycin (also known as sirolimus), has been identified. 1 Compromised repair systems in tumors also offer opportunities for intervention, making it possible to attack malignant cells in which maintenance of the genome has been weakened. Time-dependent accumulation of damage in cells and organs is associated with gradual functional decline and aging. 2 The molecular basis of this phenomenon is unclear, 3-5 whereas in cancer, DNA alterations are the major culprit. In this review, I present evidence that cancer and diseases of aging are two sides of the DNAdamage problem. An examination of the importance of DNA damage and the systems of genome maintenance in relation to aging is followed by an account of the derailment of genome guardian mechanisms in cancer and of how this cancerspecific phenomenon can be exploited for treatment.

1,917 citations