scispace - formally typeset
Search or ask a question
Author

Philip J. Withers

Bio: Philip J. Withers is an academic researcher from University of Manchester. The author has contributed to research in topics: Residual stress & Stress (mechanics). The author has an hindex of 78, co-authored 808 publications receiving 29578 citations. Previous affiliations of Philip J. Withers include Open University & Rutherford Appleton Laboratory.


Papers
More filters
Book
01 Jan 1993
TL;DR: In this article, the Eshelby approach is used to model composites and a program for calculating the S-tensors of a composite model is presented, along with a list of programs for an Eshelbys calculation.
Abstract: Preface 1. General introduction 2. Basic composite models 3. The Eshelby approach to modelling composites 4. Plastic deformation 5. Thermal effects and high temperature behaviour 6. The interfacial region 7. Fracture processes and failure mechanisms 8. Transport properties and environmental performance 9. Fabrication processes 10. Development of matrix microstructure 11. Testing and characterisation techniques 12. Applications Appendix 1. Nomenclature Appendix 2. Matrices and reinforcements - selected thermophysical properties Appendix 3. The basic Eshelby S-tensors Appendix 4. Listing of a program for an Eshelby calculation.

1,826 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of residual stresses on fatigue lifetimes and structural integrity are first summarised, followed by the definition and measurement of residual stress, which are characterised according to the characteristic length scale over which they self-equilibrate.
Abstract: Residual stress is that which remains in a body that is stationary and at equilibrium with its surroundings. It can be very detrimental to the performance of a material or the life of a component. Alternatively, beneficial residual stresses can be introduced deliberately. Residual stresses are more difficult to predict than the in-service stresses on which they superimpose. For this reason, it is important to have reliable methods for the measurement of these stresses and to understand the level of information they can provide. In this paper, which is the first part of a two part overview, the effect of residual stresses on fatigue lifetimes and structural integrity are first summarised, followed by the definition and measurement of residual stresses. Different types of stress are characterised according to the characteristic length scale over which they self-equilibrate. By comparing this length to the gauge volume of each technique, the capability of a range of techniques is assessed. In the sec...

1,317 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight than conventional attenuation based tomography.
Abstract: X-ray computer tomography (CT) is fast becoming an accepted tool within the materials science community for the acquisition of 3D images. Here the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one. Our review considers first the image acquisition process, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight (e.g. fast and high resolution imaging, crystallite (grain) imaging) than conventional attenuation based tomography. Methods and shortcomings of CT are examined for the quantification of 3D volumetric data to extract key topological parameters such as phase fractions, phase contiguity, and damage levels as well as density variations. As a non-destructive technique, CT is an ideal means of following structural development over time via time lapse sequences of 3D images (sometimes called 3D movies or 4D imaging). This includes information nee...

1,009 citations

Journal ArticleDOI
TL;DR: A comprehensive body of knowledge has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed in this article, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects.
Abstract: The comprehensive body of knowledge that has built up with respect to the friction stir welding (FSW) of aluminium alloys since the technique was invented in 1991 is reviewed The basic principles of FSW are described, including thermal history and metal flow, before discussing how process parameters affect the weld microstructure and the likelihood of entraining defects After introducing the characteristic macroscopic features, the microstructural development and related distribution of hardness are reviewed in some detail for the two classes of wrought aluminium alloy (non-heat-treatable and heat-treatable) Finally, the range of mechanical properties that can be achieved is discussed, including consideration of residual stress, fracture, fatigue and corrosion It is demonstrated that FSW of aluminium is becoming an increasingly mature technology with numerous commercial applications In spite of this, much remains to be learned about the process and opportunities for further research a

956 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examine the nature and origins of residual stresses across a range of scales, from the long range residual stress fields in engineering components and welded structures, through the interphase stresses present in composites and coatings, to the microscale interactions of phase transformations with local stresses.
Abstract: Residual stress is that which remains in a body that is stationary and at equilibrium with its surroundings. It can be detrimental when it reduces the tolerance of the material to an externally applied force, as is the case with welded joints. On the other hand, it can be exploited to design materials or components which are resistant to damage, toughened glass being a good example. This paper, the second part of a two part overview, the first part having been devoted to measurement techniques, examines the nature and origins of residual stresses across a range of scales. This extends from the long range residual stress fields in engineering components and welded structures, through the interphase stresses present in composites and coatings, to the microscale interactions of phase transformations with local stresses.

773 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Book
30 Mar 2007
TL;DR: Friction stir welding (FSW) is a relatively new solid-state joining process that is used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding as discussed by the authors.
Abstract: Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. Recently, friction stir processing (FSP) was developed for microstructural modification of metallic materials. In this review article, the current state of understanding and development of the FSW and FSP are addressed. Particular emphasis has been given to: (a) mechanisms responsible for the formation of welds and microstructural refinement, and (b) effects of FSW/FSP parameters on resultant microstructure and final mechanical properties. While the bulk of the information is related to aluminum alloys, important results are now available for other metals and alloys. At this stage, the technology diffusion has significantly outpaced the fundamental understanding of microstructural evolution and microstructure–property relationships.

4,750 citations

Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations