scispace - formally typeset
Search or ask a question
Author

Philip P. Power

Bio: Philip P. Power is an academic researcher from University of California, Davis. The author has contributed to research in topics: Terphenyl & Crystal structure. The author has an hindex of 90, co-authored 665 publications receiving 33211 citations. Previous affiliations of Philip P. Power include Stanford University & University of Texas at Austin.


Papers
More filters
Journal ArticleDOI
14 Jan 2010-Nature
TL;DR: The last quarter of the twentieth century and the beginning decade of the twenty-first witnessed spectacular discoveries in the chemistry of the heavier main-group elements, which led to new structural and bonding insights as well as a gradually increasing realization that the science more resembles that of transition-metal complexes than that of their lighter main- group congeners.
Abstract: The chemistry of heavier main-group elements such as aluminium, silicon and phosphorus is very different from that of the lighter ones such as boron, carbon and nitrogen, yet discussions of this topic have been dominated by comparisons with the light elements. Philip Power's review focuses on advances in chemistry of the heavier main-group elements that reveal them as having more in common with the transition metals than the lighter members of the main groups. The concept of heavier main-group elements as 'transition metals' is supported by recent work showing that many of the new compounds react with small molecules such as H2, NH3, C2H4 and CO under mild conditions and display potential as catalysts. The last quarter of the twentieth century and the beginning decade of the twenty-first witnessed spectacular discoveries in the chemistry of the heavier main-group elements. The new compounds that were synthesized highlighted the fundamental differences between their electronic properties and those of the lighter elements to a degree that was not previously apparent. This has led to new structural and bonding insights as well as a gradually increasing realization that the chemistry of the heavier main-group elements more resembles that of transition-metal complexes than that of their lighter main-group congeners. The similarity is underlined by recent work, which has shown that many of the new compounds react with small molecules such as H2, NH3, C2H4 or CO under mild conditions and display potential for applications in catalysis.

1,077 citations

Journal ArticleDOI
TL;DR: The key unifying feature of almost all molecules discussed in this review is that they are generally stabilized by the use of bulky substituents which block associative or various decomposition pathways.
Abstract: This review is essentially an update of one entitled “πBonding and The Lone Pair Effect in Multiple Bonds Between Heavier Main Group Elements” which was published more than 10 years ago in this journal.1 The coverage of that survey was focused on the synthesis, structure, and bonding of stable compounds2 of heavier main group elements that correspond to the skeletal drawings reproduced in Tables 1 and 2. A row of numbers is listed at the bottom of each column in these tables. This refers to the number of stable complexes from each class that are currently known. The numbers in parentheses refer to the number of stable species that were known at the time of the previous review. Clearly, many of the compound classes listed have undergone considerable expansion although some remain stubbornly rare. The most significant developments for each class will be discussed in detail under the respective sections. As will be seen, there are also a limited number of multiple bonded heavier main group species that do not fit neatly in the classifications in Tables 1 and 2. However, to keep the review to a manageable length, the limits and exclusions, which parallel those used earlier, are summarized as follows: (i) discussion is mainly confined to compounds where experimental data on stable, isolated species have been obtained, (ii) stable compounds having multiple bonding between heavier main group elements and transition metals are not generally discussed, (iii) compounds in which a multiple bonded heavier main group element is incorporated within a ring are generally not covered, and (iv) hypervalent main group compounds that may incorporate faux multiple bonding are generally excluded. Such compounds are distinguished from those in Tables 1 and 2 in that they apparently require the use of more than four valence bonding orbitals at one or more of the bonded atoms. The remainder of this review is organized in a similar manner to that of the previous one wherein the compounds to be discussed are classified according to those summarized in Tables 1 and 2. The key unifying feature of almost all molecules discussed in this review is that they are generally stabilized by the use of bulky substituents which block associative or various decomposition pathways.3 Since the previous review was published in 1999, several review articles that cover parts of the subject matter have appeared.4

865 citations

Journal ArticleDOI
TL;DR: In this paper, a series of two-coordinate complexes of iron(II) were prepared and studied for single-molecule magnet behavior, and the spin reversal barriers were fit by employing a sum of tunneling, direct, Raman and Orbach relaxation processes, resulting in spin reversal barrier of Ueff = 181, 146, 109, 104, and 43 cm−1 for 1−5, respectively.
Abstract: A series of two-coordinate complexes of iron(II) were prepared and studied for single-molecule magnet behavior. Five of the compounds, Fe[N(SiMe3)(Dipp)]2 (1), Fe[C(SiMe3)3]2 (2), Fe[N(H)Ar′]2 (3), Fe[N(H)Ar*]2 (4), and Fe(OAr′)2 (5) feature a linear geometry at the FeII center, while the sixth compound, Fe[N(H)Ar#]2 (6), is bent with an N–Fe–N angle of 140.9(2)° (Dipp = C6H3-2,6-Pri2; Ar′ = C6H3-2,6-(C6H3-2,6-Pri2)2; Ar* = C6H3-2,6-(C6H2-2,4,6-Pri2)2; Ar# = C6H3-2,6-(C6H2-2,4,6-Me3)2). Ac magnetic susceptibility data for all compounds revealed slow magnetic relaxation under an applied dc field, with the magnetic relaxation times following a general trend of 1 > 2 > 3 > 4 > 5 ≫ 6. Arrhenius plots created for the linear complexes were fit by employing a sum of tunneling, direct, Raman, and Orbach relaxation processes, resulting in spin reversal barriers of Ueff = 181, 146, 109, 104, and 43 cm−1 for 1–5, respectively. CASSCF/NEVPT2 calculations on the crystal structures were performed to explore the influence of deviations from rigorous D∞h geometry on the d-orbital splittings and the electronic state energies. Asymmetry in the ligand fields quenches the orbital angular momentum of 1–6, but ultimately spin–orbit coupling is strong enough to compensate and regenerate the orbital moment. The lack of simple Arrhenius behavior in 1–5 can be attributed to a combination of the asymmetric ligand field and the influence of vibronic coupling, with the latter possibility being suggested by thermal ellipsoid models to the diffraction data.

492 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: 1. Advantages and disadvantages of Chemical Redox Agents, 2. Reversible vs Irreversible ET Reagents, 3. Categorization of Reagent Strength.
Abstract: 1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 1. Radical Cations 891 2. Carbocations 893 3. Cyanocarbons and Related Electron-Rich Compounds 894

3,432 citations

Journal ArticleDOI
TL;DR: New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclized isocyanides have been developed recently.
Abstract: The chemistry of heterocyclic carbenes has experienced a rapid development over the last years. In addition to the imidazolin-2-ylidenes, a large number of cyclic diaminocarbenes with different ring sizes have been described. Aside from diaminocarbenes, P-heterocyclic carbenes, and derivatives with only one, or even no heteroatom within the carbene ring are known. New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclization of β-functionalized isocyanides have been developed recently. This review summarizes the new developments regarding the synthesis of N-heterocyclic carbenes and their metal complexes.

2,454 citations

Journal ArticleDOI
TL;DR: The authors present here a classification and structure/function analysis of native metal sites based on these functions, and the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized.
Abstract: For present purposes, a protein-bound metal site consists of one or more metal ions and all protein side chain and exogenous bridging and terminal ligands that define the first coordination sphere of each metal ion. Such sites can be classified into five basic types with the indicated functions: (1) structural -- configuration (in part) of protein tertiary and/or quaternary structure; (2) storage -- uptake, binding, and release of metals in soluble form: (3) electron transfer -- uptake, release, and storage of electrons; (4) dioxygen binding -- metal-O{sub 2} coordination and decoordination; and (5) catalytic -- substrate binding, activation, and turnover. The authors present here a classification and structure/function analysis of native metal sites based on these functions, where 5 is an extensive class subdivided by the type of reaction catalyzed. Within this purview, coverage of the various site types is extensive, but not exhaustive. The purpose of this exposition is to present examples of all types of sites and to relate, insofar as is currently feasible, the structure and function of selected types. The authors largely confine their considerations to the sites themselves, with due recognition that these site features are coupled to protein structure at all levels. In themore » next section, the coordination chemistry of metalloprotein sites and the unique properties of a protein as a ligand are briefly summarized. Structure/function relationships are systematically explored and tabulations of structurally defined sites presented. Finally, future directions in bioinorganic research in the context of metal site chemistry are considered. 620 refs.« less

2,242 citations