scispace - formally typeset
Search or ask a question
Author

Philip St. J. Russell

Bio: Philip St. J. Russell is an academic researcher from Max Planck Society. The author has contributed to research in topics: Photonic-crystal fiber & Photonic crystal. The author has an hindex of 47, co-authored 356 publications receiving 16560 citations. Previous affiliations of Philip St. J. Russell include University of Southampton & University of Erlangen-Nuremberg.


Papers
More filters
Journal ArticleDOI
TL;DR: A hollow-core photonic crystal fiber system that guides light at the center of a microscale liquid channel and acts as an optofluidic microreactor with a reaction volume of less than 35 nL is used to demonstrate in situ optical detection of photoreduction processes that are key components of many photocatalytic reaction schemes.
Abstract: Performing quantitative in situ spectroscopic analysis on minuscule sample volumes is a common difficulty in photochemistry. To address this challenge, we use a hollow-core photonic crystal fiber (HC-PCF) that guides light at the center of a microscale liquid channel and acts as an optofluidic microreactor with a reaction volume of less than 35 nL. The system was used to demonstrate in situ optical detection of photoreduction processes that are key components of many photocatalytic reaction schemes. The photoreduction of viologens (XV2+) to the radical XV•+ in a homogeneous mixture with carbon nanodot (CND) light absorbers is studied for a range of different carbon dots and viologens. Time-resolved absorption spectra, measured over several UV irradiation cycles, are interpreted with a quantitative kinetic model to determine photoreduction and photobleaching rate constants. The powerful combination of time-resolved, low-volume absorption spectroscopy and kinetic modeling highlights the potential of optofluidic microreactors as a highly sensitive, quantitative, and rapid screening platform for novel photocatalysts and flow chemistry in general.

10 citations

Journal ArticleDOI
TL;DR: This work uses a recently developed technique, combining dispersive Fourier transformation with spectral interferometry, to reconstruct the spectral amplitude and phase at each round-trip and follow in detail the pulse reorganization that occurs.
Abstract: Femtosecond pulses circulating in a synchronously driven fiber ring cavity have complex amplitude and phase profiles that can change completely from one round-trip to the next. We use a recently developed technique, combining dispersive Fourier transformation) with spectral interferometry, to reconstruct the spectral amplitude and phase at each round-trip and, thereby, follow in detail the pulse reorganization that occurs. We focus on two different regimes: a period-two regime in which the pulse alternates between two distinct states and a highly complex regime. We characterize the spectral amplitude and phase of the pulses in both regimes at a repetition rate of 75.6 MHz and find good agreement with modeling of the system based on numerical solutions of the generalized nonlinear Schrodinger equation with feedback.

10 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the generation of ultrashort near-UV pulses by soliton self-compression in kagome-style hollow-core photonic crystal fibers filled with ambient air.
Abstract: We report generation of ultrashort near-UV pulses by soliton self-compression in kagome-style hollow-core photonic crystal fibers filled with ambient air. Pump pulses with the energy of 2.6 µJ and duration of 54 fs at 400 nm were compressed temporally by a factor of 5, to a duration of ∼11 fs. The experimental results are supported by numerical simulations, showing that both Raman and Kerr effects play a role in the compression dynamics. The convenience of using ambient air and the absence of glass windows that would distort the compressed pulses makes the setup highly attractive as the basis of an efficient table-top UV pulse compressor.

10 citations

Journal ArticleDOI
01 May 1996-Nature

10 citations

Posted Content
TL;DR: In this article, the authors used chiral photonic crystal fiber (PCF) to realize a circularly polarized continuous-wave Brillouin laser with robustness against external perturbations.
Abstract: Stimulated Brillouin scattering (SBS) has many applications, for example, in sensing, microwave photonics and signal processing. Here we report the first experimental study of SBS in chiral photonic crystal fiber (PCF), which displays optical activity and robustly maintains circular polarization states against external perturbations. As a result, circularly polarized pump light is cleanly back-scattered into a Stokes signal with the orthogonal circular polarization state, as is required by angular momentum conservation. By comparison, untwisted PCF generates a Stokes signal with an unpredictable polarization state, owing to its high sensitivity to external perturbations. We use chiral PCF to realize a circularly polarized continuous-wave Brillouin laser. The results pave the way to a new generation of stable circularly polarized SBS systems with applications in quantum manipulation, optical tweezers, optical gyroscopes and fiber sensors.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
17 Jan 2003-Science
TL;DR: In this article, a periodic array of microscopic air holes that run along the entire fiber length are used to guide light by corralling it within a periodic arrays of microscopic holes.
Abstract: Photonic crystal fibers guide light by corralling it within a periodic array of microscopic air holes that run along the entire fiber length Largely through their ability to overcome the limitations of conventional fiber optics—for example, by permitting low-loss guidance of light in a hollow core—these fibers are proving to have a multitude of important technological and scientific applications spanning many disciplines The result has been a renaissance of interest in optical fibers and their uses

3,918 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings and intragrating sensing concepts.
Abstract: We review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings, intragrating sensing concepts, long period-based grating sensors, fiber grating laser-based systems, and interferometric sensor systems based on grating reflectors.

3,665 citations

Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations