scispace - formally typeset
Search or ask a question
Author

Philip St. J. Russell

Bio: Philip St. J. Russell is an academic researcher from Max Planck Society. The author has contributed to research in topics: Photonic-crystal fiber & Photonic crystal. The author has an hindex of 47, co-authored 356 publications receiving 16560 citations. Previous affiliations of Philip St. J. Russell include University of Southampton & University of Erlangen-Nuremberg.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an encapsulated gold conductor is used to tune the quasi-transverse electric (TE) and quasitransverse magnetic (TM) modes with an efficiency of ∼ 65fm/V at a peak-to-peak bias voltage of 4
Abstract: We report the experimental realization of magneto-optical coupling between whispering-gallery modes in a germanate (56GeO2-31PbO-9Na2O-4Ga2O3) microspherical cavity due to the Faraday effect. An encapsulated gold conductor heats the resonator and tunes the quasi-transverse electric (TE) and quasi-transverse magnetic (TM) polarized modes with an efficiency of ∼ 65 fm/V at a peak-to-peak bias voltage of 4 V. The signal parameters for a number of heating regimes are quantified to confirm sensitivity to the generated magnetic field. The quasi-TE and quasi-TM resonance frequencies stably converge near the device's heating rate limit (equivalently, bias voltage limit) in order to minimize inherent geometrical birefringence. This functionality optimizes Faraday rotation and thus enables the observation of subsequent magneto-optics.

9 citations

Journal ArticleDOI
TL;DR: A novel technique for airborne particle metrology based on hollow-core photonic crystal fiber offers in situ particle counting, sizing and refractive index measurement with effectively unlimited device lifetime.
Abstract: Efficient monitoring of airborne particulate matter (PM), especially particles with aerodynamic diameter less than 2.5 um (PM2.5), is crucial for improving public health. Reliable information on the concentration, size distribution and chemical characteristics of PMs is key to evaluating air pollution and identifying its sources. Standard methods for PM2.5 characterization require sample collection from the atmosphere and post-analysis using sophisticated equipment in a laboratory environment, and are normally very time-consuming. Although optical methods based on analysis of scattering of free-space laser beams or evanescent fields are in principle suitable for real-time particle counting and sizing, lack of knowledge of the refractive index in these methods not only leads to inevitable sizing ambiguity but also prevents identification of the particle material. In the case of evanescent wave detection, the system lifetime is strongly limited by adhesion of particles to the surfaces. Here we report a novel technique for airborne particle metrology based on hollow-core photonic crystal fibre. It offers in situ particle counting, sizing and refractive index measurement with effectively unlimited device lifetime, and relies on optical forces that automatically capture airborne particles in front of the hollow core and propel them into the fibre. The resulting transmission drop, together with the time-of-flight of the particles passing through the fibre, provide unambiguous mapping of particle size and refractive index with high accuracy. The technique represents a considerable advance over currently available real-time particle metrology systems, and can be directly applied to monitoring air pollution in the open atmosphere as well as precise particle characterization in a local environment such as a closed room or a reaction vessel.

9 citations

Patent
03 May 2001
TL;DR: In this paper, a nonlinear optical device consisting of a source of input light having a first spectrum and an optical fibre 10 arranged so that in use the light propagates through the fibre 10, the optical fiber 10 comprises a tapered region including a waist 30, the waist 30 having a diameter smaller than 10 microns for a length of more than 20 mm.
Abstract: A nonlinear optical device, comprises a source of input light having a first spectrum and an optical fibre 10 arranged so that in use the light propagates through the fibre 10, the optical fibre 10 comprises a tapered region including a waist 30, the waist 30 having a diameter smaller than 10 microns for a length of more than 20 mm, wherein the propagating light is converted by nonlinear optical processes into output light having a spectrum different from the first spectrum

8 citations

Proceedings ArticleDOI
19 Jul 1999
TL;DR: In this article, a novel analysis of specially designed photonic crystal fibers accounts for the existence of endlessly single-mode structures with flattened dispersion, and an approach permits to control the fiber dispersion in terms of its geometrical parameters.
Abstract: A novel analysis of specially designed photonic crystal fibers accounts for the existence of endlessly single-mode structures with flattened dispersion. Our approach permits to control the fiber dispersion in terms of its geometrical parameters.© (1999) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

8 citations

Journal ArticleDOI
TL;DR: A simple non-destructive optical method for measuring the diameter of individual capillaries based on recording the spectrum scattered from whispering gallery modes excited in the capillary walls, allowing real-time measurement of fiber structure during the draw with sub-micron accuracy.
Abstract: Single-ring hollow-core photonic crystal fibers, consisting of a ring of one or two thin-walled glass capillaries surrounding a central hollow core, hold great promise for use in optical communications and beam delivery, and are already being successfully exploited for extreme pulse compression and efficient wavelength conversion in gases. However, achieving low loss over long (km) lengths requires highly accurate maintenance of the microstructure-a major fabrication challenge. In certain applications, for example adiabatic mode transformers, it is advantageous to taper the fibers, but no technique exists for measuring the delicate and complex microstructure without first cleaving the taper at several positions along its length. In this Letter, we present a simple non-destructive optical method for measuring the diameter of individual capillaries. Based on recording the spectrum scattered from whispering gallery modes excited in the capillary walls, the technique is highly robust, allowing real-time measurement of fiber structure during the draw with sub-micron accuracy.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
17 Jan 2003-Science
TL;DR: In this article, a periodic array of microscopic air holes that run along the entire fiber length are used to guide light by corralling it within a periodic arrays of microscopic holes.
Abstract: Photonic crystal fibers guide light by corralling it within a periodic array of microscopic air holes that run along the entire fiber length Largely through their ability to overcome the limitations of conventional fiber optics—for example, by permitting low-loss guidance of light in a hollow core—these fibers are proving to have a multitude of important technological and scientific applications spanning many disciplines The result has been a renaissance of interest in optical fibers and their uses

3,918 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings and intragrating sensing concepts.
Abstract: We review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings, intragrating sensing concepts, long period-based grating sensors, fiber grating laser-based systems, and interferometric sensor systems based on grating reflectors.

3,665 citations

Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations