scispace - formally typeset
Search or ask a question
Author

Philip St. J. Russell

Bio: Philip St. J. Russell is an academic researcher from Max Planck Society. The author has contributed to research in topics: Photonic-crystal fiber & Photonic crystal. The author has an hindex of 47, co-authored 356 publications receiving 16560 citations. Previous affiliations of Philip St. J. Russell include University of Southampton & University of Erlangen-Nuremberg.


Papers
More filters
Proceedings ArticleDOI
12 May 2013
TL;DR: In this article, it was shown numerically that a fundamental soliton can cleanly blue-shift in the absence of any higher order nonlinear effects, and an all-fiber integrated device may be designed that allows tunable frequency up-conversion over an octave, combined with pulse compression.
Abstract: Gas-filled hollow-core photonic crystal fiber (HC-PCF) is an ideal vehicle for studying nonlinear fiber optics in gaseous media [1]. It combines the merits of conventional fibers (tight single-mode confinement over long distances) with the advantages of gases: pressure-controlled dispersion, absence of optical damage and transparency in extreme wavelength ranges. In the case of kagome-style HC-PCF, these features have permitted observation of highly efficient tunable deep-UV generation [2] and ionization-based nonlinear fiber optics [3,4]. In the latter case soliton self-compression produces intensities sufficient to partially ionize the filling gas (~1015 W/cm2), resulting in plasma-induced phase-modulation and a unique soliton self-frequency blue-shift. The initial dynamics of these phenomena are dominated by higher order soliton propagation and compression, followed by fission and the emission of multiple blue-shifting solitons. It has been predicted using perturbation theory, however, that fundamental solitons will self-frequency blue-shift in the absence of any higher order nonlinear effects [4]. In this paper we show numerically that a fundamental soliton can indeed cleanly blue-shift, and we go on to suggest how an all-fiber integrated device may be designed that allows tunable frequency up-conversion over an octave, combined with pulse compression.
Proceedings ArticleDOI
12 Nov 2015
TL;DR: Soliton dynamics, coupled with either plasma formation or molecular modulation, enable the efficient generation of ultrafast vacuum-ultraviolet light pulses in gas-filled hollow-core photonic-crystal fibres.
Abstract: Soliton dynamics, coupled with either plasma formation or molecular modulation, enable the efficient generation of ultrafast vacuum-ultraviolet light pulses in gas-filled hollow-core photonic-crystal fibres. We review the theory, experiment and future prospects of these sources.
Proceedings ArticleDOI
TL;DR: In this paper, the authors reported light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. But their experiment was performed at the endface of a hollow core photonic crystal fiber (HC-PCF).
Abstract: We report light-driven instability and optomechanical self-oscillation of a fused silica “nanospike” at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.
Proceedings ArticleDOI
03 Aug 2020
TL;DR: In this paper, a chiral three-core PCF was used to generate circularly polarized supercontinuum light (850-1650 nm) in a single vortex mode.
Abstract: We report generation of circularly polarized supercontinuum light (850-1650 nm) in a single vortex mode using a chiral three-core PCF. We show chiral multicore PCFs enable robust maintenance of circularly polarized vortex modes. © 2020 The Author(s)
Proceedings ArticleDOI
22 May 2011
TL;DR: In this article, the transient switching dynamics of the forward Raman-like scattering (SRLS) and inter-polarization scattering (SIPS) between orthogonally polarized pump and Stokes waves were studied.
Abstract: Forward stimulated light scattering by GHz acoustic resonances (ARs) guided in a µm-sized photonic crystal fiber (PCF) core gives rise to two classes of scattering: forward stimulated Raman-like scattering (SRLS) between pump and Stokes waves in the same optical mode [1], and forward stimulated inter-polarization scattering (SIPS) between orthogonally polarized pump and Stokes waves [2]. Here we study for the first time the transient switching dynamics of forward SIPS, building on previous studies that were restricted to the steady-state regime [2].

Cited by
More filters
Journal ArticleDOI
TL;DR: The field of cavity optomechanics explores the interaction between electromagnetic radiation and nano-or micromechanical motion as mentioned in this paper, which explores the interactions between optical cavities and mechanical resonators.
Abstract: We review the field of cavity optomechanics, which explores the interaction between electromagnetic radiation and nano- or micromechanical motion This review covers the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction mediated by the radiation pressure force, the large variety of experimental systems which exhibit this interaction, optical measurements of mechanical motion, dynamical backaction amplification and cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity quantum optomechanics experiments In addition, we describe the perspectives for fundamental quantum physics and for possible applications of optomechanical devices

4,031 citations

Journal ArticleDOI
17 Jan 2003-Science
TL;DR: In this article, a periodic array of microscopic air holes that run along the entire fiber length are used to guide light by corralling it within a periodic arrays of microscopic holes.
Abstract: Photonic crystal fibers guide light by corralling it within a periodic array of microscopic air holes that run along the entire fiber length Largely through their ability to overcome the limitations of conventional fiber optics—for example, by permitting low-loss guidance of light in a hollow core—these fibers are proving to have a multitude of important technological and scientific applications spanning many disciplines The result has been a renaissance of interest in optical fibers and their uses

3,918 citations

Journal Article
TL;DR: In this article, a fast Fourier transform method of topography and interferometry is proposed to discriminate between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour generation techniques.
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings and intragrating sensing concepts.
Abstract: We review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings, intragrating sensing concepts, long period-based grating sensors, fiber grating laser-based systems, and interferometric sensor systems based on grating reflectors.

3,665 citations

Journal ArticleDOI
04 Oct 2006
TL;DR: In this paper, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

3,361 citations