scispace - formally typeset
Search or ask a question
Author

Philipp Bucher

Bio: Philipp Bucher is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Promoter & Enhancer. The author has an hindex of 58, co-authored 165 publications receiving 17687 citations. Previous affiliations of Philipp Bucher include French Institute of Health and Medical Research & Ludwig Institute for Cancer Research.


Papers
More filters
Journal ArticleDOI
TL;DR: The PROSITE database consists of biologically significant patterns and profiles designed in such a way that with appropriate computational tools it can rapidly and reliably help to determine to which known family of proteins (if any) a new sequence belongs, or which known domain(s) it contains.
Abstract: PROSITE [Bairoch and Bucher (1994) Nucleic Acids Res., 22, 3583-3589; Hofmann et al. (1999) Nucleic Acids Res., 27, 215-219] is a method of identifying the functions of uncharacterized proteins translated from genomic or cDNA sequences. The PROSITE database (http://www.expasy.org/prosite/) consists of biologically significant patterns and profiles designed in such a way that with appropriate computational tools it can rapidly and reliably help to determine to which known family of proteins (if any) a new sequence belongs, or which known domain(s) it contains.

1,502 citations

Journal ArticleDOI
TL;DR: Optimized weight matrices defining four major eukaryotic promoter elements, the TATA-box, cap signal, CCAAT-, and GC-box are presented; they were derived by comparative sequence analysis of 502 unrelated RNA polymerase II promoter regions by a novel algorithm that is generally applicable to sequence motifs positionally correlated with a biologically defined position in the sequences.

1,128 citations

Proceedings Article
06 Aug 1999
TL;DR: It is shown that ESTScan can detect and extract coding regions from low-quality sequences with high selectivity and sensitivity, and is able to accurately correct frameshift errors.
Abstract: One of the problems associated with the large-scale analysis of unannotated, low quality EST sequences is the detection of coding regions and the correction of frameshift errors that they often contain. We introduce a new type of hidden Markov model that explicitly deals with the possibility of errors in the sequence to analyze, and incorporates a method for correcting these errors. This model was implemented in an efficient and robust program, ESTScan. We show that ESTScan can detect and extract coding regions from low-quality sequences with high selectivity and sensitivity, and is able to accurately correct frameshift errors. In the framework of genome sequencing projects, ESTScan could become a very useful tool for gene discovery, for quality control, and for the assembly of contigs representing the coding regions of genes.

1,099 citations

Journal ArticleDOI
TL;DR: InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects.
Abstract: Signature databases are vital tools for identifying distant relationships in novel sequences and hence for inferring protein function. InterPro is an integrated documentation resource for protein families, domains and functional sites, which amalgamates the efforts of the PROSITE, PRINTS, Pfam and ProDom database projects. Each InterPro entry includes a functional description, annotation, literature references and links back to the relevant member database(s). Release 2.0 of InterPro (October 2000) contains over 3000 entries, representing families, domains, repeats and sites of post-translational modification encoded by a total of 6804 different regular expressions, profiles, fingerprints and Hidden Markov Models. Each InterPro entry lists all the matches against SWISS-PROT and TrEMBL (more than 1,000,000 hits from 462,500 proteins in SWISS-PROT and TrEMBL). The database is accessible for text- and sequence-based searches at http://www.ebi.ac.uk/interpro/. Questions can be emailed to interhelp@ebi.ac.uk.

1,042 citations

Journal ArticleDOI
TL;DR: The close relationship of PROSite with the SWISS-PROT protein database allows the evaluation of the sensitivity and specificity of the PROSITE motifs and their periodic reviewing.
Abstract: Among the various databases dedicated to the identification of protein families and domains, PROSITE is the first one created and has continuously evolved since. PROSITE currently consists of a large collection of biologically meaningful motifs that are described as patterns or profiles, and linked to documentation briefly describing the protein family or domain they are designed to detect. The close relationship of PROSITE with the SWISS-PROT protein database allows the evaluation of the sensitivity and specificity of the PROSITE motifs and their periodic reviewing. In return, PROSITE is used to help annotate SWISS-PROT entries. The main characteristics and the techniques of family and domain identification used by PROSITE are reviewed in this paper.

897 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

70,111 citations

Journal ArticleDOI
TL;DR: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved and modifications are incorporated into a new program, CLUSTAL W, which is freely available.
Abstract: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individual weights are assigned to each sequence in a partial alignment in order to down-weight near-duplicate sequences and up-weight the most divergent ones. Secondly, amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. Thirdly, residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure. Fourthly, positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions. These modifications are incorporated into a new program, CLUSTAL W which is freely available.

63,427 citations

Journal ArticleDOI
TL;DR: MUSCLE is a new computer program for creating multiple alignments of protein sequences that includes fast distance estimation using kmer counting, progressive alignment using a new profile function the authors call the log-expectation score, and refinement using tree-dependent restricted partitioning.
Abstract: We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the logexpectation score, and refinement using treedependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.

37,524 citations

Journal ArticleDOI
TL;DR: Two unusual extensions are presented: Multiscale, which adds the ability to visualize large‐scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales.
Abstract: The design, implementation, and capabilities of an extensible visualization system, UCSF Chimera, are discussed. Chimera is segmented into a core that provides basic services and visualization, and extensions that provide most higher level functionality. This architecture ensures that the extension mechanism satisfies the demands of outside developers who wish to incorporate new features. Two unusual extensions are presented: Multiscale, which adds the ability to visualize large-scale molecular assemblies such as viral coats, and Collaboratory, which allows researchers to share a Chimera session interactively despite being at separate locales. Other extensions include Multalign Viewer, for showing multiple sequence alignments and associated structures; ViewDock, for screening docked ligand orientations; Movie, for replaying molecular dynamics trajectories; and Volume Viewer, for display and analysis of volumetric data. A discussion of the usage of Chimera in real-world situations is given, along with anticipated future directions. Chimera includes full user documentation, is free to academic and nonprofit users, and is available for Microsoft Windows, Linux, Apple Mac OS X, SGI IRIX, and HP Tru64 Unix from http://www.cgl.ucsf.edu/chimera/.

35,698 citations

Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations