scispace - formally typeset
Search or ask a question
Author

Philipp Fischer

Bio: Philipp Fischer is an academic researcher from University of Freiburg. The author has contributed to research in topics: Supervised learning & Convolutional neural network. The author has an hindex of 12, co-authored 16 publications receiving 51968 citations. Previous affiliations of Philipp Fischer include Berlin School of Economics and Law.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a set of surrogate classes are formed by applying a variety of transformations to a randomly sampled image patch, and the resulting feature representation is not class specific, but provides robustness to the transformations that have been applied during training.
Abstract: Deep convolutional networks have proven to be very successful in learning task specific features that allow for unprecedented performance on various computer vision tasks. Training of such networks follows mostly the supervised learning paradigm, where sufficiently many input-output pairs are required for training. Acquisition of large training sets is one of the key challenges, when approaching a new task. In this paper, we aim for generic feature learning and present an approach for training a convolutional network using only unlabeled data. To this end, we train the network to discriminate between a set of surrogate classes. Each surrogate class is formed by applying a variety of transformations to a randomly sampled ‘seed’ image patch. In contrast to supervised network training, the resulting feature representation is not class specific. It rather provides robustness to the transformations that have been applied during training. This generic feature representation allows for classification results that outperform the state of the art for unsupervised learning on several popular datasets (STL-10, CIFAR-10, Caltech-101, Caltech-256). While features learned with our approach cannot compete with class specific features from supervised training on a classification task, we show that they are advantageous on geometric matching problems, where they also outperform the SIFT descriptor.

702 citations

Posted Content
TL;DR: This paper compares features from various layers of convolutional neural nets to standard SIFT descriptors and Surprisingly, convolutionAL neural networks clearly outperform SIFT on descriptor matching.
Abstract: Latest results indicate that features learned via convolutional neural networks outperform previous descriptors on classification tasks by a large margin. It has been shown that these networks still work well when they are applied to datasets or recognition tasks different from those they were trained on. However, descriptors like SIFT are not only used in recognition but also for many correspondence problems that rely on descriptor matching. In this paper we compare features from various layers of convolutional neural nets to standard SIFT descriptors. We consider a network that was trained on ImageNet and another one that was trained without supervision. Surprisingly, convolutional neural networks clearly outperform SIFT on descriptor matching. This paper has been merged with arXiv:1406.6909

291 citations

Journal ArticleDOI
TL;DR: Based on the quantitative evaluation results, it is believed automatic dental radiography analysis is still a challenging and unsolved problem and the datasets and the evaluation software are made available to the research community, further encouraging future developments in this field.

246 citations

Journal ArticleDOI
TL;DR: This paper promotes the use of synthetically generated data for the purpose of training deep networks on visual recognition tasks and suggests multiple ways to generate such data and evaluates the influence of dataset properties on the performance and generalization properties of the resulting networks.
Abstract: The finding that very large networks can be trained efficiently and reliably has led to a paradigm shift in computer vision from engineered solutions to learning formulations. As a result, the research challenge shifts from devising algorithms to creating suitable and abundant training data for supervised learning. How to efficiently create such training data? The dominant data acquisition method in visual recognition is based on web data and manual annotation. Yet, for many computer vision problems, such as stereo or optical flow estimation, this approach is not feasible because humans cannot manually enter a pixel-accurate flow field. In this paper, we promote the use of synthetically generated data for the purpose of training deep networks on such tasks.We suggest multiple ways to generate such data and evaluate the influence of dataset properties on the performance and generalization properties of the resulting networks. We also demonstrate the benefit of learning schedules that use different types of data at selected stages of the training process.

158 citations

Journal ArticleDOI
TL;DR: In this article, the authors promote the use of synthetically generated data for the purpose of training deep networks on such tasks, and suggest multiple ways to generate such data and evaluate the influence of dataset properties on the performance and generalization properties of the resulting networks.
Abstract: The finding that very large networks can be trained efficiently and reliably has led to a paradigm shift in computer vision from engineered solutions to learning formulations. As a result, the research challenge shifts from devising algorithms to creating suitable and abundant training data for supervised learning. How to efficiently create such training data? The dominant data acquisition method in visual recognition is based on web data and manual annotation. Yet, for many computer vision problems, such as stereo or optical flow estimation, this approach is not feasible because humans cannot manually enter a pixel-accurate flow field. In this paper, we promote the use of synthetically generated data for the purpose of training deep networks on such tasks. We suggest multiple ways to generate such data and evaluate the influence of dataset properties on the performance and generalization properties of the resulting networks. We also demonstrate the benefit of learning schedules that use different types of data at selected stages of the training process.

84 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: The key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning.
Abstract: Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, exceed the state-of-the-art in semantic segmentation. Our key insight is to build “fully convolutional” networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet [20], the VGG net [31], and GoogLeNet [32]) into fully convolutional networks and transfer their learned representations by fine-tuning [3] to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional network achieves state-of-the-art segmentation of PASCAL VOC (20% relative improvement to 62.2% mean IU on 2012), NYUDv2, and SIFT Flow, while inference takes less than one fifth of a second for a typical image.

28,225 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost and achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles.
Abstract: Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

16,727 citations

Journal ArticleDOI
TL;DR: Quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures, including FCN and DeconvNet.
Abstract: We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG16 network [1] . The role of the decoder network is to map the low resolution encoder feature maps to full input resolution feature maps for pixel-wise classification. The novelty of SegNet lies is in the manner in which the decoder upsamples its lower resolution input feature map(s). Specifically, the decoder uses pooling indices computed in the max-pooling step of the corresponding encoder to perform non-linear upsampling. This eliminates the need for learning to upsample. The upsampled maps are sparse and are then convolved with trainable filters to produce dense feature maps. We compare our proposed architecture with the widely adopted FCN [2] and also with the well known DeepLab-LargeFOV [3] , DeconvNet [4] architectures. This comparison reveals the memory versus accuracy trade-off involved in achieving good segmentation performance. SegNet was primarily motivated by scene understanding applications. Hence, it is designed to be efficient both in terms of memory and computational time during inference. It is also significantly smaller in the number of trainable parameters than other competing architectures and can be trained end-to-end using stochastic gradient descent. We also performed a controlled benchmark of SegNet and other architectures on both road scenes and SUN RGB-D indoor scene segmentation tasks. These quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures. We also provide a Caffe implementation of SegNet and a web demo at http://mi.eng.cam.ac.uk/projects/segnet/ .

13,468 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: Conditional adversarial networks are investigated as a general-purpose solution to image-to-image translation problems and it is demonstrated that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Moreover, since the release of the pix2pix software associated with this paper, hundreds of twitter users have posted their own artistic experiments using our system. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without handengineering our loss functions either.

11,958 citations

Posted Content
TL;DR: Conditional Adversarial Network (CA) as discussed by the authors is a general-purpose solution to image-to-image translation problems, which can be used to synthesize photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks.
Abstract: We investigate conditional adversarial networks as a general-purpose solution to image-to-image translation problems. These networks not only learn the mapping from input image to output image, but also learn a loss function to train this mapping. This makes it possible to apply the same generic approach to problems that traditionally would require very different loss formulations. We demonstrate that this approach is effective at synthesizing photos from label maps, reconstructing objects from edge maps, and colorizing images, among other tasks. Indeed, since the release of the pix2pix software associated with this paper, a large number of internet users (many of them artists) have posted their own experiments with our system, further demonstrating its wide applicability and ease of adoption without the need for parameter tweaking. As a community, we no longer hand-engineer our mapping functions, and this work suggests we can achieve reasonable results without hand-engineering our loss functions either.

11,127 citations