scispace - formally typeset
Search or ask a question
Author

Philipp Tschandl

Bio: Philipp Tschandl is an academic researcher from Medical University of Vienna. The author has contributed to research in topics: Dermatoscopy & Medicine. The author has an hindex of 28, co-authored 94 publications receiving 3745 citations. Previous affiliations of Philipp Tschandl include Simon Fraser University & University of Vienna.


Papers
More filters
Journal ArticleDOI
TL;DR: The HAM10000 dataset as mentioned in this paper contains 10015 dermatoscopic images from different populations acquired and stored by different modalities and applied different acquisition and cleaning methods and developed semi-automatic workflows utilizing specifically trained neural networks.
Abstract: Training of neural networks for automated diagnosis of pigmented skin lesions is hampered by the small size and lack of diversity of available datasets of dermatoscopic images. We tackle this problem by releasing the HAM10000 ("Human Against Machine with 10000 training images") dataset. We collected dermatoscopic images from different populations acquired and stored by different modalities. Given this diversity we had to apply different acquisition and cleaning methods and developed semi-automatic workflows utilizing specifically trained neural networks. The final dataset consists of 10015 dermatoscopic images which are released as a training set for academic machine learning purposes and are publicly available through the ISIC archive. This benchmark dataset can be used for machine learning and for comparisons with human experts. Cases include a representative collection of all important diagnostic categories in the realm of pigmented lesions. More than 50% of lesions have been confirmed by pathology, while the ground truth for the rest of the cases was either follow-up, expert consensus, or confirmation by in-vivo confocal microscopy.

1,528 citations

Posted Content
TL;DR: This work summarizes the results of the largest skin image analysis challenge in the world, hosted by the International Skin Imaging Collaboration (ISIC), a global partnership that has organized the world's largest public repository of dermoscopic images of skin.
Abstract: This work summarizes the results of the largest skin image analysis challenge in the world, hosted by the International Skin Imaging Collaboration (ISIC), a global partnership that has organized the world's largest public repository of dermoscopic images of skin. The challenge was hosted in 2018 at the Medical Image Computing and Computer Assisted Intervention (MICCAI) conference in Granada, Spain. The dataset included over 12,500 images across 3 tasks. 900 users registered for data download, 115 submitted to the lesion segmentation task, 25 submitted to the lesion attribute detection task, and 159 submitted to the disease classification task. Novel evaluation protocols were established, including a new test for segmentation algorithm performance, and a test for algorithm ability to generalize. Results show that top segmentation algorithms still fail on over 10% of images on average, and algorithms with equal performance on test data can have different abilities to generalize. This is an important consideration for agencies regulating the growing set of machine learning tools in the healthcare domain, and sets a new standard for future public challenges in healthcare.

587 citations

Journal ArticleDOI
TL;DR: The HAM10000 (“Human Against Machine with 10000 training images”) dataset is released, which consists of 10015 dermatoscopic images which are released as a training set for academic machine learning purposes and are publicly available through the ISIC archive.
Abstract: Training of neural networks for automated diagnosis of pigmented skin lesions is hampered by the small size and lack of diversity of available datasets of dermatoscopic images. We tackle this problem by releasing the HAM10000 ("Human Against Machine with 10000 training images") dataset. We collected dermatoscopic images from different populations acquired and stored by different modalities. Given this diversity we had to apply different acquisition and cleaning methods and developed semi-automatic workflows utilizing specifically trained neural networks. The final dataset consists of 10015 dermatoscopic images which are released as a training set for academic machine learning purposes and are publicly available through the ISIC archive. This benchmark dataset can be used for machine learning and for comparisons with human experts. Cases include a representative collection of all important diagnostic categories in the realm of pigmented lesions. More than 50% of lesions have been confirmed by pathology, while the ground truth for the rest of the cases was either follow-up, expert consensus, or confirmation by in-vivo confocal microscopy.

470 citations

Journal ArticleDOI
TL;DR: A systematic evaluation of the value of AI-based decision support in skin tumor diagnosis demonstrates the superiority of human–computer collaboration over each individual approach and supports the potential of automated approaches in diagnostic medicine.
Abstract: The rapid increase in telemedicine coupled with recent advances in diagnostic artificial intelligence (AI) create the imperative to consider the opportunities and risks of inserting AI-based support into new paradigms of care Here we build on recent achievements in the accuracy of image-based AI for skin cancer diagnosis to address the effects of varied representations of AI-based support across different levels of clinical expertise and multiple clinical workflows We find that good quality AI-based support of clinical decision-making improves diagnostic accuracy over that of either AI or physicians alone, and that the least experienced clinicians gain the most from AI-based support We further find that AI-based multiclass probabilities outperformed content-based image retrieval (CBIR) representations of AI in the mobile technology environment, and AI-based support had utility in simulations of second opinions and of telemedicine triage In addition to demonstrating the potential benefits associated with good quality AI in the hands of non-expert clinicians, we find that faulty AI can mislead the entire spectrum of clinicians, including experts Lastly, we show that insights derived from AI class-activation maps can inform improvements in human diagnosis Together, our approach and findings offer a framework for future studies across the spectrum of image-based diagnostics to improve human-computer collaboration in clinical practice

353 citations

Journal ArticleDOI
TL;DR: State-of-the-art machine-learning classifiers outperformed human experts in the diagnosis of pigmented skin lesions and should have a more important role in clinical practice.
Abstract: Summary Background Whether machine-learning algorithms can diagnose all pigmented skin lesions as accurately as human experts is unclear. The aim of this study was to compare the diagnostic accuracy of state-of-the-art machine-learning algorithms with human readers for all clinically relevant types of benign and malignant pigmented skin lesions. Methods For this open, web-based, international, diagnostic study, human readers were asked to diagnose dermatoscopic images selected randomly in 30-image batches from a test set of 1511 images. The diagnoses from human readers were compared with those of 139 algorithms created by 77 machine-learning labs, who participated in the International Skin Imaging Collaboration 2018 challenge and received a training set of 10 015 images in advance. The ground truth of each lesion fell into one of seven predefined disease categories: intraepithelial carcinoma including actinic keratoses and Bowen's disease; basal cell carcinoma; benign keratinocytic lesions including solar lentigo, seborrheic keratosis and lichen planus-like keratosis; dermatofibroma; melanoma; melanocytic nevus; and vascular lesions. The two main outcomes were the differences in the number of correct specific diagnoses per batch between all human readers and the top three algorithms, and between human experts and the top three algorithms. Findings Between Aug 4, 2018, and Sept 30, 2018, 511 human readers from 63 countries had at least one attempt in the reader study. 283 (55·4%) of 511 human readers were board-certified dermatologists, 118 (23·1%) were dermatology residents, and 83 (16·2%) were general practitioners. When comparing all human readers with all machine-learning algorithms, the algorithms achieved a mean of 2·01 (95% CI 1·97 to 2·04; p Interpretation State-of-the-art machine-learning classifiers outperformed human experts in the diagnosis of pigmented skin lesions and should have a more important role in clinical practice. However, a possible limitation of these algorithms is their decreased performance for out-of-distribution images, which should be addressed in future research. Funding None.

297 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The HAM10000 dataset as mentioned in this paper contains 10015 dermatoscopic images from different populations acquired and stored by different modalities and applied different acquisition and cleaning methods and developed semi-automatic workflows utilizing specifically trained neural networks.
Abstract: Training of neural networks for automated diagnosis of pigmented skin lesions is hampered by the small size and lack of diversity of available datasets of dermatoscopic images. We tackle this problem by releasing the HAM10000 ("Human Against Machine with 10000 training images") dataset. We collected dermatoscopic images from different populations acquired and stored by different modalities. Given this diversity we had to apply different acquisition and cleaning methods and developed semi-automatic workflows utilizing specifically trained neural networks. The final dataset consists of 10015 dermatoscopic images which are released as a training set for academic machine learning purposes and are publicly available through the ISIC archive. This benchmark dataset can be used for machine learning and for comparisons with human experts. Cases include a representative collection of all important diagnostic categories in the realm of pigmented lesions. More than 50% of lesions have been confirmed by pathology, while the ground truth for the rest of the cases was either follow-up, expert consensus, or confirmation by in-vivo confocal microscopy.

1,528 citations

Journal ArticleDOI
TL;DR: This work develops a novel architecture, MultiResUNet, as the potential successor to the U-Net architecture, and tests and compared it with the classical U- net on a vast repertoire of multimodal medical images.

1,027 citations

Journal ArticleDOI
01 Oct 2019
TL;DR: A major finding of the review is that few studies presented externally validated results or compared the performance of deep learning models and health-care professionals using the same sample, which limits reliable interpretation of the reported diagnostic accuracy.
Abstract: Summary Background Deep learning offers considerable promise for medical diagnostics. We aimed to evaluate the diagnostic accuracy of deep learning algorithms versus health-care professionals in classifying diseases using medical imaging. Methods In this systematic review and meta-analysis, we searched Ovid-MEDLINE, Embase, Science Citation Index, and Conference Proceedings Citation Index for studies published from Jan 1, 2012, to June 6, 2019. Studies comparing the diagnostic performance of deep learning models and health-care professionals based on medical imaging, for any disease, were included. We excluded studies that used medical waveform data graphics material or investigated the accuracy of image segmentation rather than disease classification. We extracted binary diagnostic accuracy data and constructed contingency tables to derive the outcomes of interest: sensitivity and specificity. Studies undertaking an out-of-sample external validation were included in a meta-analysis, using a unified hierarchical model. This study is registered with PROSPERO, CRD42018091176. Findings Our search identified 31 587 studies, of which 82 (describing 147 patient cohorts) were included. 69 studies provided enough data to construct contingency tables, enabling calculation of test accuracy, with sensitivity ranging from 9·7% to 100·0% (mean 79·1%, SD 0·2) and specificity ranging from 38·9% to 100·0% (mean 88·3%, SD 0·1). An out-of-sample external validation was done in 25 studies, of which 14 made the comparison between deep learning models and health-care professionals in the same sample. Comparison of the performance between health-care professionals in these 14 studies, when restricting the analysis to the contingency table for each study reporting the highest accuracy, found a pooled sensitivity of 87·0% (95% CI 83·0–90·2) for deep learning models and 86·4% (79·9–91·0) for health-care professionals, and a pooled specificity of 92·5% (95% CI 85·1–96·4) for deep learning models and 90·5% (80·6–95·7) for health-care professionals. Interpretation Our review found the diagnostic performance of deep learning models to be equivalent to that of health-care professionals. However, a major finding of the review is that few studies presented externally validated results or compared the performance of deep learning models and health-care professionals using the same sample. Additionally, poor reporting is prevalent in deep learning studies, which limits reliable interpretation of the reported diagnostic accuracy. New reporting standards that address specific challenges of deep learning could improve future studies, enabling greater confidence in the results of future evaluations of this promising technology. Funding None.

850 citations

Journal ArticleDOI
TL;DR: The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues, which are the second most targeted group of drug targets, after the G-protein-coupled receptors.
Abstract: The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein-coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies.

724 citations

Journal ArticleDOI
TL;DR: A broad framework is provided for incorporating AI and machine learning tools into clinical oncology, with an emphasis on biomarker development, and some of the challenges relating to the use of AI are discussed, including the need for well-curated validation datasets, regulatory approval and fair reimbursement strategies.
Abstract: In the past decade, advances in precision oncology have resulted in an increased demand for predictive assays that enable the selection and stratification of patients for treatment. The enormous divergence of signalling and transcriptional networks mediating the crosstalk between cancer, stromal and immune cells complicates the development of functionally relevant biomarkers based on a single gene or protein. However, the result of these complex processes can be uniquely captured in the morphometric features of stained tissue specimens. The possibility of digitizing whole-slide images of tissue has led to the advent of artificial intelligence (AI) and machine learning tools in digital pathology, which enable mining of subvisual morphometric phenotypes and might, ultimately, improve patient management. In this Perspective, we critically evaluate various AI-based computational approaches for digital pathology, focusing on deep neural networks and 'hand-crafted' feature-based methodologies. We aim to provide a broad framework for incorporating AI and machine learning tools into clinical oncology, with an emphasis on biomarker development. We discuss some of the challenges relating to the use of AI, including the need for well-curated validation datasets, regulatory approval and fair reimbursement strategies. Finally, we present potential future opportunities for precision oncology.

683 citations