scispace - formally typeset
Search or ask a question
Author

Philippe Hinsinger

Bio: Philippe Hinsinger is an academic researcher from SupAgro. The author has contributed to research in topics: Rhizosphere & Soil pH. The author has an hindex of 54, co-authored 116 publications receiving 12105 citations. Previous affiliations of Philippe Hinsinger include Institut national de la recherche agronomique & University of Western Ontario.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants.
Abstract: In most soils, inorganic phosphorus occurs at fairly low concentrations in the soil solution whilst a large proportion of it is more or less strongly held by diverse soil minerals. Phosphate ions can indeed be adsorbed onto positively charged minerals such as Fe and Al oxides. Phosphate (P) ions can also form a range of minerals in combination with metals such as Ca, Fe and Al. These adsorption/desorption and precipitation/dissolution equilibria control the concentration of P in the soil solution and, thereby, both its chemical mobility and bioavailability. Apart from the concentration of P ions, the major factors that determine those equilibria as well as the speciation of soil P are (i) the pH, (ii) the concentrations of anions that compete with P ions for ligand exchange reactions and (iii) the concentrations of metals (Ca, Fe and Al) that can coprecipitate with P ions. The chemical conditions of the rhizosphere are known to considerably differ from those of the bulk soil, as a consequence of a range of processes that are induced either directly by the activity of plant roots or by the activity of rhizosphere microflora. The aim of this paper is to give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants. Amongst these, the uptake activity of plant roots should be taken into account in the first place. A second group of activities which is of major concern with respect to P bioavailability are those processes that can affect soil pH, such as proton/bicarbonate release (anion/cation balance) and gaseous (O2/CO2) exchanges. Thirdly, the release of root exudates such as organic ligands is another activity of the root that can alter the concentration of P in the soil solution. These various processes and their relative contributions to the changes in the bioavailability of soil inorganic P that can occur in the rhizosphere can considerably vary with (i) plant species, (ii) plant nutritional status and (iii) ambient soil conditions, as will be stressed in this paper. Their possible implications for the understanding and management of P nutrition of plants will be briefly addressed and discussed.

2,120 citations

Journal ArticleDOI
TL;DR: The aim of the present review is to define the various origins of root-mediated changes of pH in the rhizosphere, i.e., the volume of soil around roots that is influenced by root activities and the response of plant roots to deficiencies of P and Fe and to Al toxicity.
Abstract: The aim of the present review is to define the various origins of root-mediated changes of pH in the rhizosphere, i.e., the volume of soil around roots that is influenced by root activities. Root-mediated pH changes are of major relevance in an ecological perspective as soil pH is a critical parameter that influences the bioavailability of many nutrients and toxic elements and the physiology of the roots and rhizosphere microorganisms. A major process that contributes root-induced pH changes in the rhizosphere is the release of charges carried by H+ or OH− to compensate for an unbalanced cation–anion uptake at the soil–root interface. In addition to the ions taken up by the plant, all the ions crossing the plasma membrane of root cells (e.g., organic anions exuded by plant roots) should be taken into account, since they all need to be balanced by an exchange of charges, i.e., by a release of either H+ or OH−. Although poorly documented, root exudation and respiration can contribute some proportion of rhizosphere pH decrease as a result of a build-up of the CO2 concentration. This will form carbonic acid in the rhizosphere that may dissociate in neutral to alkaline soils, and result in some pH decrease. Ultimately, plant roots and associated microorganisms can also alter rhizosphere pH via redox-coupled reactions. These various processes involved in root-mediated pH changes in the rhizosphere also depend on environmental constraints, especially nutritional constraints to which plants can respond. This is briefly addressed, with a special emphasis on the response of plant roots to deficiencies of P and Fe and to Al toxicity. Finally, soil pH itself and pH buffering capacity also have a dramatic influence on root-mediated pH changes.

1,194 citations

Journal ArticleDOI
TL;DR: It is shown that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century and if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.
Abstract: Bioavailable nitrogen is increasing due to human activity, rapidly outpacing increases in another essential nutrient, phosphorous. Penuelas et al. show that this increasing imbalance between these nutrients is likely to significantly affect life and limit carbon storage in this century.

959 citations

Journal ArticleDOI
TL;DR: This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them, and addresses the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry.
Abstract: Life on Earth is sustained by a small volume of soil surrounding roots, called the rhizosphere. The soil is where most of the biodiversity on Earth exists, and the rhizosphere probably represents the most dynamic habitat on Earth; and certainly is the most important zone in terms of defining the quality and quantity of the Human terrestrial food resource. Despite its central importance to all life, we know very little about rhizosphere functioning, and have an extraordinary ignorance about how best we can manipulate it to our advantage. A major issue in research on rhizosphere processes is the intimate connection between the biology, physics and chemistry of the system which exhibits astonishing spatial and temporal heterogeneities. This review considers the unique biophysical and biogeochemical properties of the rhizosphere and draws some connections between them. Particular emphasis is put on how underlying processes affect rhizosphere ecology, to generate highly heterogeneous microenvironments. Rhizosphere ecology is driven by a combination of the physical architecture of the soil matrix, coupled with the spatial and temporal distribution of rhizodeposits, protons, gases, and the role of roots as sinks for water and nutrients. Consequences for plant growth and whole-system ecology are considered. The first sections address the physical architecture and soil strength of the rhizosphere, drawing their relationship with key functions such as the movement and storage of elements and water as well as the ability of roots to explore the soil and the definition of diverse habitats for soil microorganisms. The distribution of water and its accessibility in the rhizosphere is considered in detail, with a special emphasis on spatial and temporal dynamics and heterogeneities. The physical architecture and water content play a key role in determining the biogeochemical ambience of the rhizosphere, via their effect on partial pressures of O2 and CO2, and thereby on redox potential and pH of the rhizosphere, respectively. We address the various mechanisms by which roots and associated microorganisms alter these major drivers of soil biogeochemistry. Finally, we consider the distribution of nutrients, their accessibility in the rhizosphere, and their functional relevance for plant and microbial ecology. Gradients of nutrients in the rhizosphere, and their spatial patterns or temporal dynamics are discussed in the light of current knowledge of rhizosphere biophysics and biogeochemistry. Priorities for future research are identified as well as new methodological developments which might help to advance a comprehensive understanding of the co-occurring processes in the rhizosphere.

946 citations

Journal ArticleDOI
TL;DR: It is shown that rhizosphere processes in the long run are central to biogeochemical cycles, soil formation and Earth history, and major anticipated discoveries will enhance basic understanding and allow applications of new knowledge to deal with nutrient deficiencies, pests and diseases.
Abstract: Soils are the product of the activities of plants, which supply organic matter and play a pivotal role in weathering rocks and minerals. Many plant species have a distinct ecological amplitude that shows restriction to specific soil types. In the numerous interactions between plants and soil, microorganisms also play a key role. Here we review the existing literature on interactions between plants, microorganisms and soils, and include considerations of evolutionary time scales, where possible. Some of these interactions involve intricate systems of communication, which in the case of symbioses such as the arbuscular mycorrhizal symbiosis are several hundreds of millions years old; others involve the release of exudates from roots, and other products of rhizodeposition that are used as substrates for soil microorganisms. The possible reasons for the survival value of this loss of carbon over tens or hundreds of millions of years of evolution of higher plants are discussed, taking a cost-benefit approach. Co-evolution of plants and rhizosphere microorganisms is discussed, in the light of known ecological interactions between various partners in terrestrial ecosystems. Finally, the role of higher plants, especially deep-rooted plants and associated microorganisms in the weathering of rocks and minerals, ultimately contributing to pedogenesis, is addressed. We show that rhizosphere processes in the long run are central to biogeochemical cycles, soil formation and Earth history. Major anticipated discoveries will enhance our basic understanding and allow applications of new knowledge to deal with nutrient deficiencies, pests and diseases, and the challenges of increasing global food production and agroecosystem productivity in an environmentally responsible manner.

516 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.

4,710 citations

Book
01 Jan 1982
TL;DR: In this article, the Soil as a Plant Nutrient Medium is discussed and the importance of water relations in plant growth and crop production, and the role of water as a plant nutrient medium.
Abstract: 1. Plant Nutrients. 2. The Soil as a Plant Nutrient Medium. 3. Nutrient Uptake and Assimilation. 4. Plant Water Relationships. 5. Plant Growth and Crop Production. 6. Fertilizer Application. 7. Nitrogen. 8. Sulphur. 9. Phosphorus. 10. Potassium. 11. Calcium. 12. Magnesium. 13. Iron. 14. Manganese. 15. Zinc. 16. Copper. 17. Molybdenum. 18. Boron. 19. Further Elements of Importance. 20. Elements with More Toxic Effects. General Readings. References. Index.

4,130 citations

Journal ArticleDOI
TL;DR: Physiological, biochemical, and molecular studies of white lupin and other species response to P-deficiency have identified targets that may be useful for plant improvement, and Genomic approaches involving identification of expressed sequence tags found under low-P stress may also yield target sites for plant improved.
Abstract: Contents I. Introduction 424 II. The phosphorus conundrum 424 III. Adaptations to low P 424 IV. Uptake of P 424 V. P deficiency alters root development and function 426 VI. P deficiency modifies carbon metabolism 431 VII. Acid phosphatase 436 VIII. Genetic regulation of P responsive genes 437 IX. Improving P acquisition 439 X. Synopsis 440 Summary Phosphorus (P) is limiting for crop yield on > 30% of the world's arable land and, by some estimates, world resources of inexpensive P may be depleted by 2050. Improvement of P acquisition and use by plants is critical for economic, humanitarian and environmental reasons. Plants have evolved a diverse array of strategies to obtain adequate P under limiting conditions, including modifications to root architecture, carbon metabolism and membrane structure, exudation of low molecular weight organic acids, protons and enzymes, and enhanced expression of the numerous genes involved in low-P adaptation. These adaptations may be less pronounced in mycorrhizal-associated plants. The formation of cluster roots under P-stress by the nonmycorrhizal species white lupin (Lupinus albus), and the accompanying biochemical changes exemplify many of the plant adaptations that enhance P acquisition and use. Physiological, biochemical, and molecular studies of white lupin and other species response to P-deficiency have identified targets that may be useful for plant improvement. Genomic approaches involving identification of expressed sequence tags (ESTs) found under low-P stress may also yield target sites for plant improvement. Interdisciplinary studies uniting plant breeding, biochemistry, soil science, and genetics under the large umbrella of genomics are prerequisite for rapid progress in improving nutrient acquisition and use in plants.

2,429 citations

Journal ArticleDOI
TL;DR: Recent developments in rhizosphere research are discussed in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.
Abstract: The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

2,332 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants.
Abstract: In most soils, inorganic phosphorus occurs at fairly low concentrations in the soil solution whilst a large proportion of it is more or less strongly held by diverse soil minerals. Phosphate ions can indeed be adsorbed onto positively charged minerals such as Fe and Al oxides. Phosphate (P) ions can also form a range of minerals in combination with metals such as Ca, Fe and Al. These adsorption/desorption and precipitation/dissolution equilibria control the concentration of P in the soil solution and, thereby, both its chemical mobility and bioavailability. Apart from the concentration of P ions, the major factors that determine those equilibria as well as the speciation of soil P are (i) the pH, (ii) the concentrations of anions that compete with P ions for ligand exchange reactions and (iii) the concentrations of metals (Ca, Fe and Al) that can coprecipitate with P ions. The chemical conditions of the rhizosphere are known to considerably differ from those of the bulk soil, as a consequence of a range of processes that are induced either directly by the activity of plant roots or by the activity of rhizosphere microflora. The aim of this paper is to give an overview of those chemical processes that are directly induced by plant roots and which can affect the concentration of P in the soil solution and, ultimately, the bioavailability of soil inorganic P to plants. Amongst these, the uptake activity of plant roots should be taken into account in the first place. A second group of activities which is of major concern with respect to P bioavailability are those processes that can affect soil pH, such as proton/bicarbonate release (anion/cation balance) and gaseous (O2/CO2) exchanges. Thirdly, the release of root exudates such as organic ligands is another activity of the root that can alter the concentration of P in the soil solution. These various processes and their relative contributions to the changes in the bioavailability of soil inorganic P that can occur in the rhizosphere can considerably vary with (i) plant species, (ii) plant nutritional status and (iii) ambient soil conditions, as will be stressed in this paper. Their possible implications for the understanding and management of P nutrition of plants will be briefly addressed and discussed.

2,120 citations