scispace - formally typeset
Search or ask a question
Author

Philippe Razin

Other affiliations: École Normale Supérieure
Bio: Philippe Razin is an academic researcher from University of Bordeaux. The author has contributed to research in topics: Rift & Carbonate platform. The author has an hindex of 25, co-authored 71 publications receiving 1896 citations. Previous affiliations of Philippe Razin include École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a high-resolution sequence stratigraphic study of the Natih Formation in Oman is presented, which shows distinct and predictive patterns in the distribution and geometries of reservoir, source rock, and seal facies.
Abstract: The middle Cretaceous carbonate deposits in the Middle East are among the most productive oil-bearing stratigraphic intervals in the world, containing numerous giant fields in, for instance, the United Arab Emirates (Mauddud and Mishrif formations), Iran (Sarvak Formation), and Oman (Natih Formation). One of the main reasons for this concentration of hydrocarbons is a geological factor: the coexistence of both reservoir facies and source rocks in the same depositional sequences due to the repeated creation of organic-rich intrashelf basins. This is demonstrated in a high-resolution sequence stratigraphic study of the Natih Formation in Oman, which shows distinct and predictive patterns in the distribution and geometries of reservoir, source rock, and seal facies. The sequence stratigraphic model presented here may serve as a reference for time-equivalent deposits in the Middle East. The sedimentological analysis showed that the Natih Formation was formed by the alternation of two types of depositional systems: (1) a flat-bedded, mixed carbonate-clay ramp, dominated by benthic foraminifera, and (2) a carbonate-dominated ramp bordering an intrashelf basin, with abundant rudists in the mid-ramp environment and organic-rich basinal facies. Three fully developed third-order sequences are distinguished, showing a similar evolution of the depositional system, with a mixed carbonate-clay ramp system at the base, followed by a carbonate-dominated ramp system in the upper part. Variations occur on this pattern, however, depending on the relative influence of eustasy, environmental factors, and tectonism. The late Albiannearly Cenomanian sequence I shows an evolution from a mixed, flat ramp to a carbonate-dominated ramp and organic-rich intrashelf (Begin page 22) basin, and sedimentation is predominantly controlled by eustatic sea level. In the middle Cenomanian sequence II, the evolution from a mixed ramp to a carbonate ramp is also observed, but no intrashelf basin topography was developed in the studied area. This may be due to the high influx of clay that influenced the environment in this sequence, inhibiting the carbonate production, probably in combination with the lack of sufficient creation of accommodation space. The late Cenomaniannearly Turonian transgressive part of sequence III shows a similar evolution to that observed in sequence I, with the development of an organic-rich intrashelf basin. During highstand, however, a tectonically controlled sedimentation pattern is observed, with the development of forced regressive wedges (due to the flexural bulge of the foreland basin). Intrashelf basin formation occurred twice in the transgressive part of the third-order depositional sequences of the Natih Formation. Our study shows that this is mainly the result of differential sedimentation rates, that is, the dynamics of the carbonate sedimentary system itself in response to (rapid) rises in relative sea level, probably of eustatic origin. Tectonism was only a minor factor in the creation of the basin topography, possibly through the creation of small initial relief. The accumulation of the organic matter is not only a result of the creation of a sufficiently deep-water column to guarantee dysaerobic conditions for its preservation. The late Albian and late Cenomaniannearly Turonian were also periods of generally favorable conditions worldwide for high organic matter productivity. The time lines and stratigraphic architecture of the third-order sequences presented here have an application potential at the scale of the Arabian plate. The general sedimentation pattern is predicted by our model, but modifications due to different local conditions are likely to occur.

180 citations

Journal ArticleDOI
TL;DR: In this paper, a high-resolution sequence stratigraphic study has been carried out in the Adam Foothills of Northern Oman, where three orders of stacked depositional sequences have been found based on the reoccurrence of facies.
Abstract: The Cenomanian of the Arabian Peninsula comprises a carbonate platform setting with rudists, characterized by gradual lateral facies changes including the interfingering of carbonate reservoirs (Natih and Mishrif formations) and source rocks. In order to be more predictive with regard to the distribution and the geometrical aspects of the reservoirs and source rocks, a high resolution sequence stratigraphic study has been carried out in the Adam Foothills of Northern Oman. Based on detailed field sections a correlation scheme covering a transect of 100 kilometers (km) has been established. Three orders of stacked depositional sequences have been found based on the reoccurrence of facies. During long-term increase of accommodation the depositional environment was separated in basinal and platform facies. In contrast, during longer term sea level fall, i.e. long-term decrease of accommodation space, prograding shelfal units extended platform facies over a large part of the basin. The most heterogeneous facies associations are found in times of minimal accommodation space, when incisions and subaerial exposure produce lateral variable strata (e.g. top Natih E). The organic matter is found at the base of two of the three longer term (3rd order) depositional sequences. The organic carbon is contained in marl-limestone couplets (small-scale cyclicity) with a high abundance of oysters and monospecific brachiopod faunas (coquinas). Rudists are found in the progradational part of these sequences, and occur mostly as reworked rudstone layers in meter to decimeter scale, high frequency cycles. The detailed regional correlation depends on the identification of medium- to small-scale (4th to 5th order) depositional sequences which are bounded by regional shifts of the facies belts. The distinct hierarchical organization of the depositional sequences in the Cenomanian, and the relative stability at that time of the Arabian Peninsula, implies a strong correlation potential and thus a broad regional similarity of the architecture of the petroleum systems at that time.

126 citations

Journal ArticleDOI
TL;DR: In this article, three orders of depositional sequences are defined (third to fifth order) and correlated between sections over the course of three third-order sequences, covering the Barremian to Lower Aptian, a thirdorder depositional pattern is documented that consists of a succession of three distinct faunal assemblages: discoidal orbitolinids and calcareous algae were deposited during early transgression; microbialites and microencrusters dominated the late transgressive to early highstand facies; and a rudist and milioliddominated facies is typical
Abstract: Barremian and Aptian shallow-water carbonate facies (uppermost Lekhwair, Kharaib and Shuaiba Formations) are described from outcrops in northern Oman Based on facies analysis and bedding pattern, three orders of depositional sequences are defined (third to fifth order) and correlated between sections Over the course of three third-order sequences, covering the Barremian to Lower Aptian, a third-order depositional pattern is documented that consists of a succession of three distinct faunal assemblages: discoidal orbitolinids and calcareous algae were deposited during early transgression; microbialites and microencrusters dominate the late transgressive to early highstand facies; and a rudist- and miliolid-dominated facies is typical of the highstand This ecological succession was controlled largely by palaeoenvironmental changes, such as trophic level and clay influx, rather than sedimentological factors controlled by variations in accommodation space Orbitolinid beds and carbonates formed by microbialites and microencrusters seem to be the shallow-water carbonate response to global changes affecting Late Barremian to Aptian palaeoclimate and palaeoceanography

123 citations

Journal ArticleDOI
TL;DR: A structural study in Jabal Akhdar (an autochthonous window in the Oman Mountains) shows that the thrusts and imbrications, mapped in the Permian-Cretaceous formations of the Arabian Platform, have a vergence top to the north-northeast and are associated with a regional cleavage resulting from a ductile shear deformation of the same vergence as discussed by the authors.
Abstract: A structural study in Jabal Akhdar (an autochthonous window in the Oman Mountains) shows that the thrusts and imbrications, mapped in the Permian-Cretaceous formations of the Arabian Platform, have a vergence top to the north-northeast and are associated with a regional cleavage resulting from a ductile shear deformation of the same vergence. This deformation affects the entire autochthonous unit, from the southwestern edge of Jabal Akhdar to the northeastern edge of Saih Hatat, with an increasing strain intensity towards the northeast. The same domain is also affected by a HP/LT metamorphism with a northeastward increase from chlorite facies to blueschist and eclogite facies, i.e. characteristic of a northeast-dipping subduction. However, the retrograde character of the metamorphic parageneses associated with the ductile shear, as well as its north-northeast vergence, indicate that this deformation is linked to the exhumation of the autochthon during the Campanian. These observations have been synthesised in a new lithospheric-scale interpretation of the geodynamic development of the North Oman continental margins during the middle to late Cretaceous. The sequential evolution along a transect passing from southwest of Jabal Akhdar to northeast of Muscat can be summarised as follows: An intra-continental subduction zone affected the autochthon of the Arabian Platform with a basal rupture lying in the proximal part of the continental margin, to the south of the northern edge of the carbonate platform. A North Muscat microplate was created between the intra-continental subduction zone and the intra-oceanic subduction that gave rise to the Samail Ophiolite; this microplate includes the outer part of the Arabian Platform, the continental slope and the entire Hawasina Basin. From Early Turonian to Late Santonian the obduction and the intra-continental subduction were coeval and parallel. The northeast edge of the North Muscat microplate plunged below the Samail Nappe whilst the emergent southwest part overthrust the innermost parts of the Arabian Platform. The leading edge of the Samail and Hawasina Nappes advanced across the southwestern border of the North Muscat microplate just before obduction and intra-continental subduction ceased at the Santonian–Campanian boundary. Towards the end of the intra-continental subduction, the lower part of the crust of the subducted autochthon delaminated the upper part, marking the first stage of the metamorphic rocks exhumation. From Early Campanian to Early Maastrichtian, the North Muscat microplate moved to the northeast, its northeastern edge sinking by gravity into the asthenosphere. The subducted autochthon rose up, and came into contact with the base of the obducted units. The resulting uplift of the ophiolite nappes produced its emergence and partial erosion. Local crustal thickening, related to the lithospheric delamination, caused doming at Saih Hatat and subsequent erosion that locally extended to the pre-Permian sedimentary basement during the Early Maastrichtian. The present day domal shape of Jabal Akhdar is however related to Tertiary tectonic events.

112 citations

Journal ArticleDOI
TL;DR: In this article, a detailed sedimentological and sequence stratigraphic model of the platform margin of the Cretaceous carbonate margin is presented to reveal the relative importance of global and regional controls on platform evolution.
Abstract: Carbonate platform margins are sensitive recorders of changes in sea level and climate and can reveal the relative importance of global and regional controls on platform evolution. This paper focuses on the Barremian to Aptian interval (mid Cretaceous), which is known for climatic and environmental changes towards more intensified greenhouse conditions. The study area in the northern Oman mountains offers one of the very few locations where the Cretaceous carbonate margin of the Arabian Plate can be studied along continuous outcrops. Our detailed sedimentological and sequence stratigraphic model of the platform margin demonstrates how major environmental and ecological changes controlled the stratigraphic architecture. The Early Cretaceous platform margin shows high rates of progradation in Berriasian to Hauterivian times followed by lower rates and some aggradation in the Late Hauterivian to Barremian. High-energy bioclastic and oolitic sands were the dominant deposits at the margin. Turbidites were deposited at the slope and in the basin. The Early Aptian platform margin shows a marked change to purely aggradational geometries and a welldeveloped platform barrier that was formed mainly by microbial buildups. The sudden dominance in microbial activity led to cementation and stabilization of the margin and slope and, therefore, a decrease of downslope sediment transport by turbidites. In the Late Aptian, large parts of the Arabian craton were subaerially exposed and a fringing carbonate platform formed. Seven Barremian to Early Albian large-scale depositional sequences reflecting relative sea-level changes are identified on the basis of time lines constrained by physical correlation and biostratigraphy. The reconstruction of the margin geometries suggests that tectonic activity played an important role in the Early Aptian. This was most likely related to global plate reorganization that was accompanied by increased volcanic activity in many parts of the world. Along the northeastern Arabian platform the associated global changes in atmospheric and oceanic circulation are recorded with a change in platform-margin ecology from an ooid-bioclast dominated to a microbial dominated margin. Time-equivalent argillaceous deposits suggest an increase in rainfall and elevated input of nutrients onto the platform. This process contributed to the strongly diminished carbonate production by other organisms and favored microbial activity. The platform margin may thus represent a shallow-marine response to the Early Aptian global changes, commonly associated with an oceanic anoxic event in basinal environments.

110 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented a synthetic view of the geodynamic evolution of the Zagros orogen within the frame of the Arabia-Eurasia collision, and provided lithospheric-scale reconstructions of the zagros Orogen from ~ 150 to 0 Ma across two SW-NE transects.
Abstract: This paper presents a synthetic view of the geodynamic evolution of the Zagros orogen within the frame of the Arabia-Eurasia collision. The Zagros orogen and the Iranian plateau preserve a record of the long-standing convergence history between Eurasia and Arabia across the Neo-Tethys, from subduction/obduction processes to present-day collision (from ~ 150 to 0 Ma). We herein combine the results obtained on several geodynamic issues, namely the location of the oceanic suture zone, the age of oceanic closure and collision, the magmatic and geochemical evolution of the Eurasian upper plate during convergence (as testified by the successive Sanandaj-Sirjan, Kermanshah and Urumieh-Dokhtar magmatic arcs), the P-T-t history of the few Zagros blueschists, the convergence characteristics across the Neo-Tethys (kinematic velocities, tomographic constraints, subduction zones and obduction processes), together with a survey of recent results gathered by others. We provide lithospheric-scale reconstructions of the Zagros orogen from ~ 150 to 0 Ma across two SW-NE transects. The evolution of the Zagros orogen is also compared to those of the nearby Turkish and Himalayan orogens. In our geotectonic scenario for the Zagros convergence, we outline three main periods/regimes: (1) the Mid to Late Cretaceous (115-85 Ma) corresponds to a distinctive period of perturbation of subduction processes and interplate mechanical coupling marked by blueschist exhumation and upper-plate fragmentation, (2) the Paleocene-Eocene (60-40 Ma) witnesses slab break-off, major shifts in arc magmatism and distributed extension within the upper plate, and (3) from the Oligocene onwards (~ 30-0 Ma), collision develops with a progressive SW migration of deformation and topographic build-up (Sanandaj-Sirjan Zone: 20-15 Ma, High Zagros: ~12-8 Ma; Simply Folded Belt: 5-0 Ma) and with partial slab tear at depths (~10 Ma to present). Our reconstructions underline the key role played by subduction throughout the whole convergence history. We finally stress that such a long-lasting subduction system with changing boundary conditions also makes the Zagros orogen an ideal natural laboratory for subduction processes.

781 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the processes by which density flows deposit sediment and proposed a new single classification for the resulting types of deposit, which is consistent with previous models of spatial decelerating (dissipative) dilute flow.
Abstract: Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run-out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain-back for long distances into basinal lows. Deposition of ungraded mud (TE-3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE-2) and finely laminated mud (TE-1) most probably result from floc settling at lower mud concentrations. Grain-size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar-laminated (TD) and ripple cross-laminated (TC) non-cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain-size break beneath the ripple cross-laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar-laminated sand can be deposited by low-amplitude bed waves in dilute flow (TB-1), but it is most likely to be deposited mainly by high-concentration near-bed layers beneath high-density flows (TB-2). More widely spaced planar lamination (TB-3) occurs beneath massive clean sand (TA), and is also formed by high-density turbidity currents. High-density turbidite deposits (TA, TB-2 and TB-3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low-density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain-size texture. Clean-sand debrites can extend for several tens of kilometres before pinching out abruptly. Up-current transitions suggest that clean-sand debris flows sometimes form via transformation from high-density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low-strength cohesive debris flows produce extensive deposits restricted to distal areas. These low-strength debris flows may contain clasts and travel long distances (DM-2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM-1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.

712 citations

Journal ArticleDOI
TL;DR: In this article, a standard but flexible methodology is proposed to analyze stratal stacking patterns in a sequence stratigraphic unit, from sequence to systems tract and parasequence.
Abstract: The recurrence of the same types of sequence stratigraphic surface through geologic time defines cycles of change in accommodation or sediment supply, which correspond to sequences in the rock record. These cycles may be symmetrical or asymmetrical, and may or may not include all types of systems tracts that may be expected within a fully developed sequence. Depending on the scale of observation, sequences and their bounding surfaces may be ascribed to different hierarchical orders. Stratal stacking patterns combine to define trends in geometric character that include upstepping, forestepping, backstepping and downstepping, expressing three types of shoreline shift: forced regression (forestepping and downstepping at the shoreline), normal regression (forestepping and upstepping at the shoreline) and transgression (backstepping at the shoreline). Stacking patterns that are independent of shoreline trajectories may also be defined on the basis of changes in depositional style that can be correlated regionally. All stratal stacking patterns reflect the interplay of the same two fundamental variables, namely accommodation (the space available for potential sediment accumulation) and sediment supply. Deposits defined by specific stratal stacking patterns form the basic constituents of any sequence stratigraphic unit, from sequence to systems tract and parasequence. Changes in stratal stacking patterns define the position and timing of key sequence stratigraphic surfaces. Precisely which surfaces are selected as sequence boundaries varies as a function of which surfaces are best expressed within the context of the depositional setting and the preservation of facies relationships and stratal stacking patterns in that succession. The high degree of variability in the expression of sequence stratigraphic units and bounding surfaces in the rock record means ideally that the methodology used to analyze their depositional setting should be flexible from one sequence stratigraphic approach to another. Construction of this framework ensures the success of the method in terms of its objectives to provide a process-based understanding of the stratigraphic architecture. The purpose of this paper is to emphasize a standard but flexible methodology that remains objective.

704 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that only 42% of the post-35 Ma convergence is partitioned by shortening within central Iran, and the current subduction dynamics can be explained by the original lateral difference in the buoyancy of the distal margin.

509 citations