scispace - formally typeset
Search or ask a question
Author

Philippe Thévenaz

Bio: Philippe Thévenaz is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Image registration & Interpolation. The author has an hindex of 18, co-authored 39 publications receiving 4974 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional).
Abstract: We present an automatic subpixel registration algorithm that minimizes the mean square intensity difference between a reference and a test data set, which can be either images (two-dimensional) or volumes (three-dimensional). It uses an explicit spline representation of the images in conjunction with spline processing, and is based on a coarse-to-fine iterative strategy (pyramid approach). The minimization is performed according to a new variation (ML*) of the Marquardt-Levenberg algorithm for nonlinear least-square optimization. The geometric deformation model is a global three-dimensional (3-D) affine transformation that can be optionally restricted to rigid-body motion (rotation and translation), combined with isometric scaling. It also includes an optional adjustment of image contrast differences. We obtain excellent results for the registration of intramodality positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) data. We conclude that the multiresolution refinement strategy is more robust than a comparable single-stage method, being less likely to be trapped into a false local optimum. In addition, our improved version of the Marquardt-Levenberg algorithm is faster.

2,801 citations

Journal ArticleDOI
TL;DR: This work proposes a new method for the intermodal registration of images using a criterion known as mutual information and builds a multiresolution image pyramid around the unifying concept of spline-processing.
Abstract: We propose a new method for the intermodal registration of images using a criterion known as mutual information. Our main contribution is an optimizer that we specifically designed for this criterion. We show that this new optimizer is well adapted to a multiresolution approach because it typically converges in fewer criterion evaluations than other optimizers. We have built a multiresolution image pyramid, along with an interpolation process, an optimizer, and the criterion itself, around the unifying concept of spline-processing. This ensures coherence in the way we model data and yields good performance. We have tested our approach in a variety of experimental conditions and report excellent results. We claim an accuracy of about a hundredth of a pixel under ideal conditions. We are also robust since the accuracy is still about a tenth of a pixel under very noisy conditions. In addition, a blind evaluation of our results compares very favorably to the work of several other researchers.

780 citations

Book ChapterDOI
15 Oct 2000
TL;DR: This chapter presents a survey of interpolation and resampling techniques in the context of exact, separable interpolation of regularly sampled data, and explains why the approximation order inherent in the synthesis function is important to limit these interpolation artifacts.
Abstract: This chapter presents a survey of interpolation and resampling techniques in the context of exact, separable interpolation of regularly sampled data. In this context, the traditional view of interpolation is to represent an arbitrary continuous function as a discrete sum of weighted and shifted synthesis functions—in other words, a mixed convolution equation. An important issue is the choice of adequate synthesis functions that satisfy interpolation properties. Examples of finite-support ones are the square pulse (nearest-neighbor interpolation), the hat function (linear interpolation), the cubic Keys' function, and various truncated or windowed versions of the sinc function. On the other hand, splines provide examples of infinite-support interpolation functions that can be realized exactly at a finite, surprisingly small computational cost. We discuss implementation issues and illustrate the performance of each synthesis function. We also highlight several artifacts that may arise when performing interpolation, such as ringing, aliasing, blocking and blurring. We explain why the approximation order inherent in the synthesis function is important to limit these interpolation artifacts, which motivates the use of splines as a tunable way to keep them in check without any significant cost penalty.

385 citations

Journal ArticleDOI
TL;DR: The method combines and extends some of the best techniques available in the context of medical imaging and expresses the deformation field as a B-spline model, which allows the algorithm to deal with a rich variety of deformations.
Abstract: We present an elastic registration algorithm for the alignment of biological images. Our method combines and extends some of the best techniques available in the context of medical imaging. We express the deformation field as a B-spline model, which allows us to deal with a rich variety of deformations. We solve the registration problem by minimizing a pixelwise mean-square distance measure between the target image and the warped source. The problem is further constrained by way of a vector-spline regularization which provides some control over two independent quantities that are intrinsic to the deformation: its divergence, and its curl. Our algorithm is also able to handle soft landmark constraints, which is particularly useful when parts of the images contain very little information or when its repartition is uneven. We provide an optimal analytical solution in the case when only landmarks and smoothness considerations are taken into account. We have applied our approach to perform the elastic registration of images such as electrophoretic gels and fly embryos. The validation of the results by experts has been favorable in all cases.

330 citations

Journal ArticleDOI
TL;DR: A semiautomated software solution to the problem of extending the lateral field of view of a classical microscope that relies on a highly accurate registration engine to perform the pairwise registration of the individual images, and on an efficient strategy to minimize the amount of computations while maintaining the highest possible global quality.
Abstract: We present a semiautomated software solution to the problem of extending the lateral field of view of a classical microscope. The initial requirements are a set of overlapping images, along with their user-provided coarse mosaic. Our solution then refines this initial mosaic in a fully automatic fashion. We rely on a highly accurate registration engine to perform the pairwise registration of the individual images, and on an efficient strategy to minimize the amount of computations while maintaining the highest possible global quality. We describe these ingredients, which we make available as a free multiplatform user-friendly software package. We also highlight why and how the specific aspects of the present microscopy application differ from those encountered while creating more common mosaics such as panoramas. Finally, we present experimental results that illustrate and validate our method on a real biological sample. We conclude by showing that we are able to reach subpixel accuracy.

256 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of recent as well as classic image registration methods to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.

6,842 citations

Journal ArticleDOI
18 Jul 2013-Nature
TL;DR: A family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo are developed and provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.
Abstract: Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5-40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.

5,365 citations

Journal ArticleDOI
TL;DR: The software consists of a collection of algorithms that are commonly used to solve medical image registration problems, and allows the user to quickly configure, test, and compare different registration methods for a specific application.
Abstract: Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

3,444 citations

Journal ArticleDOI
TL;DR: An overview is presented of the medical image processing literature on mutual-information-based registration, an introduction for those new to the field, an overview for those working in the field and a reference for those searching for literature on a specific application.
Abstract: An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Methods are classified according to the different aspects of mutual-information-based registration. The main division is in aspects of the methodology and of the application. The part on methodology describes choices made on facets such as preprocessing of images, gray value interpolation, optimization, adaptations to the mutual information measure, and different types of geometrical transformations. The part on applications is a reference of the literature available on different modalities, on interpatient registration and on different anatomical objects. Comparison studies including mutual information are also considered. The paper starts with a description of entropy and mutual information and it closes with a discussion on past achievements and some future challenges.

3,121 citations

Journal ArticleDOI
TL;DR: The registration algorithm described is a robust and flexible tool that can be used to address a variety of image registration problems and can be tailored to meet different needs by optimizing tradeoffs between speed and accuracy.
Abstract: Purpose: We sought to describe and validate an automated image registration method(AIR 3.0) based on matching of voxel intensities. Method: Different cost functions, different minimization methods, and various sampling, smoothing, and editing strategies were compared. Internal consistency measures were used to place limits on registration accuracy for MRI data, and absolute accuracy was measured using a brain phantom for PET data. Results: All strategies were consistent with subvoxel accuracy for intrasubject, intramodality registration. Estimated accuracy of registration of structural MRI images was in the 75 to 150 µm range. Sparse data sampling strategies reduced registration times to minutes with only modest loss of accuracy. Conclusion: The registration algorithm described is a robust and flexible tool that can be used to address a variety of image registration problems. Registration strategies can be tailored to meet different needs by optimizing tradeoffs between speed and accuracy.

1,779 citations