scispace - formally typeset
Search or ask a question
Author

Philippe Wahl

Bio: Philippe Wahl is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Fluorescence anisotropy & Quenching (fluorescence). The author has an hindex of 22, co-authored 41 publications receiving 1100 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that proteins are strongly immobilized within the membrane phase within nanosecond fluorescence polarization spectroscopy.
Abstract: The motion of two fluorescent dyes, 1-anilino-8-naphthalene sulphonate, which binds reversibly, and 5-dimethylamino-1-naphthalene sulphonyl chloride, which binds covalently to excitable membrane fragments in vitro, has been studied by nanosecond fluorescence polarization spectroscopy. Both dyes were strongly immobilized by their association wtih membrane proteins. Solubilization by Triton X-100 of an important fractioon (60%) of the proteins from membrane fragments heavily labelled with 5-dimethylamino-1-naphthalene sulphonyl chloride was accompanied by a dramatic increase of motion. It is concluded that proteins are strongly immobilized within the membrane phase.

78 citations

Journal ArticleDOI
TL;DR: From these studies, one concludes that F-actin undergoes a conformation change by interacting with myosin heads, which depends on the nature of the divalent cations present in the solution.
Abstract: The interaction between F-actin and soluble proteolytic fragments of myosin, heavy meromyosin and myosin subfragment 1 without ATP, has been studied by measuring the static anisotropy and the transient anisotropy decay of the fluorescent chromophore N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl) ethylenediamine bound to F-actin. In the presence of Ca2+ ions, the mobility of the chromophore was strongly decreased by adding heavy meromyosin or myosin subfragment 1, and this conformation change of F-actin showed a strong cooperativity; that is, a very small amount of myosin heads induced the maximum anisotropy change. On the other hand, in the presence of Mg2+ ions, the addition of a small amount of myosin subfragment 1 or of heavy meromyosin increased the mobility of labeled F-actin that reached a maximum at a molar ratio of about 1/25 or 1/50, respectively. With further addition of myosin heads, the mobility of the labeled actin decreased. From these studies, one concludes that F-actin undergoes a conformation change by interacting with myosin heads, which depends on the nature of the divalent cations present in the solution.

63 citations

Journal ArticleDOI
TL;DR: The decay of anisotropy of the N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine fluorescence attached to cysteine-373 of actin can be characterized by two correlation times theta1 and theta2.
Abstract: The decay of anisotropy of the N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine fluorescence attached to cysteine-373 of actin can be characterized by two correlation times theta1 and theta2. theta1 has a value of several nanoseconds and is thought to represent some local protein motion. theta2 is of the order of several hundreds of nanoseconds. Its value increases with actin concentration. It represents an average of the G and F actin correlation times. When actin interacts with heavy meromyosin, theta2 increases and becomes infinite at a molar ratio of one heavy meromyosin molecule per four actin protomers. It is concluded that a definite complex is then formed between F actin and heavy meromyosin. In the same time, G actin concentration becomes equal to zero. Finally, when F actin forms a complex with the regulatory proteins tropomyosin and troponin, the value of theta2 is greater in the absence than in the presence of Ca2+. This result indicates that micromolar concentrations of Ca2+ induces a conformation change of the complex of F actin with the regulatory proteins.

59 citations

Journal ArticleDOI
TL;DR: The small value of the free F actin correlation time indicates that the protomer peptide chain is very flexible around its C terminus, probably involving the motion of a molecular lobe in the interaction of actin with myosin during the muscular contraction.
Abstract: G actin, labelled presumably on cysteine-373 with the fluorescent chromophore N-iodoacetyl-N'-(5 sulfo-1-napthyl)-ethylenediamine and purified by Sephacryl S-200 gel chromatography, migrated in one band on polyacrylamide gel electrophoresis and had the same polymerizability as unlabelled purified G actin. Anisotropy decays of labelled actin solutions have been studied at different ionic strengths and protein concentrations. It was found that these anisotropy decays could be fitted by a sum of two exponential functions. Under low ionic strength or below the critical concentrations the longer correlation time (45 ns at 3.5 degrees C) was independent of protein concentration and ionic strength. Above the critical concentration, the longer correlation time increased with ionic strength and protein concentration. In order to take into account that, under these conditions, the solutions contained a mixture of F and G actin at the critical concentration, the anisotropy decays were analysed as a sum of three exponential functions in which the longest correlation time characterized F actin. Since F actin correlation time also depended on actin concentration, an analysis with a sum of four exponential functions was performed, in which two fixed correlation times (100 ns and 900 ns at 3.5 degrees C) were introduced in order to characterize the F actin motions. The lower of these correlation times was attributed to regions where two actin filaments interact side by side, while the shorter one was attributed to filament regions free from intermolecular interactions. The small value of the free F actin correlation time indicates that the protomer peptide chain is very flexible around its C terminus, probably involving the motion of a molecular lobe. This flexibility might be an important factor in the interaction of actin with myosin during the muscular contraction.

51 citations


Cited by
More filters
Journal ArticleDOI
06 Sep 1990-Nature
TL;DR: The atomic models of the complex between rabbit skeletal muscle actin and bovine pancreatic deoxyribonuclease I both in the ATP and ADP forms have been determined byo X-ray analysis at an effective resolution of 2.8 Å and 3 Å.
Abstract: The atomic models of the complex between rabbit skeletal muscle actin and bovine pancreatic deoxyribonuclease I both in the ATP and ADP forms have been determined by X-ray analysis at an effective resolution of 2.8 A and 3A, respectively. The two structures are very similar. The actin molecule consists of two domains which can be further subdivided into two subdomains. ADP or ATP is located in the cleft between the domains with a calcium ion bound to the beta- or beta- and gamma-phosphates, respectively. The motif of a five-stranded beta sheet consisting of a beta meander and a right handed beta alpha beta unit appears in each domain suggesting that gene duplication might have occurred. These sheets have the same topology as that found in hexokinase.

1,802 citations

Journal ArticleDOI
TL;DR: The results of the model compound study provide evidence for a mechanism that follows the classical Stern-Volmer law (1919), predominantly involving collisional quenching, and illustrate the importance of local charge and solvent viscosity.
Abstract: The effect of iodide on the tryptophyl fluorescence of model compounds and of lysozyme was studied in order to evaluate the factors that determine the use of iodide as a selective quencher of the fluorescence of tryptophyl side chains of proteins exposed to solvent. The results with the model compounds indicate the involvement of a collisional quenching mechanism due to the agreement with the Stern-Volmer law and the proportionality of the quenching constant with To7 for indole-3-acetamide. Bimolecular rate constants, k a , calculated from measured quenching constants using available lifetime data are equal to, greater than, or less than 4-6 X lo9 M-' sec-l for uncharged, positively charged, and negaI n a preliminary study it was shown that a large fraction of the tryptophyi fluorescence of lysozyme in aqueous solution was quenched by low concentrations of iodide ion (Lehrer, lY67). It was concluded from a study of the magnitude of the quenching of fluorescence and the character of the difference fluorescence spectrum produced in the presence and absence of substrate that the fluorescence of tryptophyls exposed to solvent and located in the substrate binding site was preferentially quenched by iodide. It appeared that this technique, which can be called solute perturbation of protein fluorescence, could be used as a probe of fluorophor exposure in proteins in a manner analogous to the technique of solvent perturbation of protein absorption (Herskovits and Laskowski, 1960; Laskowski, 1966). * From the Department of Muscle Research, Boston Biomedical Research Institute, Boston, Massachusetts 021 14, and from the Department of Neurology, Harvard Medical School, Boston, Massuchusetts 02115. Receired April 22, 1971. This work was supported by grants from the National Institutes of Health (AM 11677 and HE 0581 1) and the iMass'ichuserts Heart Association (516). tively charged tryptophyl compounds, respectively. A modified version of the Stern-Volmer law was calculated for a fluorophor population with different quantum yields and quenching constants. This formulation allows the calculation of the effective quenching constant from the intercept and the slope at low iodide concentration of a F o ] M cs. l/(I-) plot. Data obtained for lysozyme indicate that for the native protein about one-half the tryptophyl fluorescence is accessible at pH 5.3 whereas all of the tryptophyl fluorescence is accessible in 6 M G d n . HCI. Information regarding the presence of charged groups near tryptophyl side chains was obtained for lysozyme by studying the dependence of the quenching on pH. More recently, studies by other workers have ~ised bromate (Winkler, 1969) and iodide (Arrio er al., 1970) to quench extrinsic fluorescence (Teale and Badley, 1970). Oxygen has also been used as a quencher of pyrenebutyric acid bound to proteins (Vaughan and Weber, 1970). Burstein (1968a) has also independently studied the quenching of tryptophyl fluorescence in model compounds by iodide. In order to learn more about the quenching mechanism and the factors which determine fluorophor exposure, various tryptophyl model compounds and a model protein, lysozyme. were used in the present study. The results of the model compound study provide evidence for a mechanism that follows the classical Stern-Volmer law (1919), predominantly involving collisional quenching, and illustrate the importance of local charge and solvent viscosity. The quenching of lysozyme fluorescence by iodide also appears to follow a similar mechanism because of the agreement obtained with a inodified version of the Stern-Volmer law which was calculated for a heterogeneous distribution of fluorophors in a protein. Effective Stern-Volmer quenching constants and values for the fractional accessible fluorescence were obtained for lyso3254 B I O C H E M I S T R Y , V O L . 1 0 , N O . 1 7 , 1 9 7 1 I O D I D E Q U E N C H I N G O F P R O T E I N F L U O R E S C E N C E zyme in 6 M Gdn.HCI, 'S M urea, and in aqueous solution at different pH's using the modified Stern--Volmer law. Values obtained are consistent with information regarding accessibility obtained by other methods. Experimental Section Muteriais. The following high-purity compounds were used as obtained from Mann Research Laboratories, New York, N. Y. : indole-3-acetic acid, indole-3-propionic acid, indole-3-butyric acid, indole-3-acetamide, N-Ac-L-TrpNH?, L-TrpOEt, Gdn . HCI, and urea. L-Trp (Cyclo Chemical Corp., Los Angeles), KI , Na&03, citric acid, and NaCl (Fisher Scientific Co., Freehold, N. J.) were all of high purity and used as obtained. Indole (Fisher) and skatole (3-methylindole) (Mann) were recrystallized from methanol containing Norit A (Matheson Coleman & Bell, Rutherford, N. J.). Hepes buffer was used as obtained from Calbiochem (Los Angeles). Poly(Glug9Trp1) and poly(Lysg7Trp3) were high molecular weight random sequence copolymers kindly supplied by Dr. G. Fasman. Lysozyme from two different sources were used (twice crystallized from Worthington Biochemical Corp., Freehold, N. J., and six-times crystallized from Miles Laboratories, Elkhart, Ind.). Both preparations gave similar results. Ac3Glcn was kindly supplied by Dr. J. Rupley and glycol chitin was obtained from Miles Laboratories. Methods. Quenching measurements at constant pH were made on five solutions of a given material containing increasing amounts of K I (0-0.2 M). These were prepared by diluting stock solutions of the model compound, of KI, of NaC1, and of buffer, into volumetric flasks. NaCl was used to keep the ionic strength constant. Stock solutions of the indole compounds were used within a few days of preparation and kept in the dark at 0-5" overnight. A small amount of SO3?(ca. M) was added to the iodide solution to prevent 1 3 formation. This was necessary because Isabsorbs in the wavelength region of tryptophyl fluorescence (filter effect) and because of possible chemical reaction. The solutions were equilibrated at 25 O before the measurements. Stock solutions of lysozyme were routinely filtered through a Millipore filter (HAWP 0.45 p ) before use. pH titrations were performed in the absence and presence of iodide by adding small quantities of 0.5 M HC1 to the solution in the cuvet, which contained 2 mM Hepes and 2 mM citrate, originally pH 8, then measuring the pH and fluorescence. pH was measured with a Radiometer PHM4c meter standardized at pH 4 and 7. Fluorescence spectra and intensities were measured by exciting a t 280 nm or longer. In most cases no corrections for iodide absorption were necessary. The fluorescence of a reference (usually the 0.2 M NaC1-0.0 M K I solution) was measured just before measuring the fluorescence of each solution in order t o correct for any exciting lamp fluctuation. Fluorescence measurements were made with either an Aminco-Bowman spectrofluorometer or an instrument that employs two Jarrell-Ash 0.25-m monochromators, an EM1 9601 B photomultiplier, and either a high-pressure 200-W mercury lamp or a 150-W high-pressure xenon lamp. Low temperatures were obtained with a refrigerated water circulator attached to the sample housing. The temperature was measured by inserting a calibrated thermistor into the sample solution. Abbreviations used are: Gdn . HCI, guanidine hydrochloride; Trp, tryptophyl or tryptophan; Hepes, N-2-hydroxyethylpiperazine-N'2-ethanesulfonic acid ; Ac3GIcii. tri-N-acetyl-D-glucosamirie. The activity of lysozyme was determined by the method of Hamaguchi et a/ . (1960). The decrease in viscosity with time caused by hydrolysis of glycol chitin (2 mg/ml) by lysozyme (0.02 mg/ml) in the presence of 0.2 M NaCl or 0.2 M KI in 2 m M citrate (pH 5.5) is the basis of this method. The specific viscosity of glycol chitin solutions in Cannon viscometers at 25" was measured with time after a small volume of lysozyme was added. The slope of the approximately linear viscosity decrease between 1 and 10 min was used as a measure of activity. The optical rotatory dispersion and circular dichroism spectra of lysozyme (0.95 mg/ml) in 0.2 M NaCl or in 0.2 M KI , 2 mM citrate (pH 5.2) were measured in a 1-cm cell with a Jasco spectropolarimeter. The absorbance of Iprevented measurements below 265 nm. Difference spectra were either measured with a Cary 15 or a Beckman DK spectrophotometer using mixing cells (Pyrocell, Inc., N. Y . ) . The total absorption over the wavelengths scanned was always below 2.2. The low-temperature studies were performed with a Beckman D K using a refrigerated sample holder.

1,655 citations

Journal ArticleDOI
TL;DR: A review of the use of the technique of solute fluorescence quenching to study the structure and dynamics of proteins and a number of factors are discussed that must be considered in analyzing such data.

1,644 citations

Book ChapterDOI
TL;DR: The chapter presents several proposals for predicting protein hydration based on the amino acid composition of the protein; however, the two main questions concerned include—whether ionic groups are more hydrated than other polar groups, and whether the amide and peptide functions are hydrated or not.
Abstract: Publisher Summary This chapter describes many of the techniques employed to study water–macromolecules interactions, their general usefulness, points out areas of mutual support and contradiction. The chapter also presents hydration of other macromolecules and the hydration of small molecules. Four broadly based approaches to operational definitions of hydration include—(1) preferential hydration, (2) hydrodynamic hydration, (3) structural hydration, and (4) low temperature hydration. The use of high resolution X-ray and neutron diffraction data on protein crystals provides an independent approach for estimation of hydration. The chapter presents several proposals for predicting protein hydration based on the amino acid composition of the protein; however, the two main questions concerned include—whether ionic groups are more hydrated than other polar groups, and whether the amide and peptide functions are hydrated or not. Low pH, and to a much smaller degree, high pH should dehydrate proteins. Intermolecular association via ionic mechanisms should be strongly dehydrating; whereas hydrophobic interactions should not have much effect on hydration levels. Although, there is a presumption that both the enthalpy and the entropy are negative for the process of adding water molecules to isolated proteins, which are maintained in their native conformations, but there is no unequivocal evidence for this.

1,057 citations