scispace - formally typeset
Search or ask a question
Author

Phillip A. Sharp

Bio: Phillip A. Sharp is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: RNA & RNA splicing. The author has an hindex of 172, co-authored 614 publications receiving 117126 citations. Previous affiliations of Phillip A. Sharp include McGovern Institute for Brain Research & Medical Research Council.
Topics: RNA, RNA splicing, Gene, Transcription (biology), DNA


Papers
More filters
Journal ArticleDOI
TL;DR: The thermolabile large T antigen, encoded by the simian virus 40 early-region mutant tsA58, was used to establish clonal cell lines derived from rat embryo fibroblasts that showed rapidly arrested growth and the inability of these cell lines to divide at the nonpermissive temperature was not readily complemented by the exogenous introduction of other nuclear oncogenes.
Abstract: The thermolabile large T antigen, encoded by the simian virus 40 early-region mutant tsA58, was used to establish clonal cell lines derived from rat embryo fibroblasts. These cell lines grew continuously at the permissive temperature but upon shift-up to the nonpermissive temperature showed rapidly arrested growth. The growth arrest occurred in either the G1 or G2 phase of the cell cycle. After growth arrest, the cells remained metabolically active as assayed by general protein synthesis and the ability to exclude trypan blue. The inability of these cell lines to divide at the nonpermissive temperature was not readily complemented by the exogenous introduction of other nuclear oncogenes. This finding suggests that either these genes establish cells via different pathways or that immortalization by one oncogene results in a finely balanced cellular state which cannot be adequately complemented by another establishment gene.

338 citations

01 Nov 2015
TL;DR: Sigova et al. as mentioned in this paper showed that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive feedback loop that contributes to the stability of gene expression programs.
Abstract: Noncoding RNA helps protein binding Besides reading the coding regions of genes, RNA polymerase generates RNA at promoter-proximal and -distal DNA elements, but the function of these molecules is largely unknown. Sigova et al. show that these RNAs facilitate interactions between gene regulators and the regulatory elements they occupy. Nascent RNA associates with the transcription factor YY1 and increases its ability to bind DNA. Thus, transcription at active regulatory elements may provide a positive feedback loop that reinforces regulatory elements contributing to the stability of gene expression programs. Science, this issue p. 978 Nascent RNAs facilitate interactions between gene regulators and regulatory elements. Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.

334 citations

Journal ArticleDOI
TL;DR: It was found that approximately 44% of the F factor is homologous to several different fi+ R factors and to Col V-K94, and that all of the homology between these plasmids and F is restricted to a region comprising only one-half of theF-factor molecule.

331 citations

Journal ArticleDOI
TL;DR: The results implicate nuclear matrix-associated hyperphosphorylated pol IIo as a possible link in the coordination of transcription and splicing processes.
Abstract: A hyperphosphorylated form of the largest subunit of RNA polymerase II (pol IIo) is associated with the pre-mRNA splicing process Pol IIo was detected in association with a subset of small nuclear ribonucleoprotein particle and Ser-Arg protein splicing factors and also with pre-mRNA splicing complexes assembled in vitro A subpopulation of pol IIo was localized to nuclear "speckle" domains enriched in splicing factors, indicating that it may also be associated with RNA processing in vivo Moreover, pol IIo was retained in a similar pattern following in situ extraction of cells and was quantitatively recovered in the nuclear matrix fraction The results implicate nuclear matrix-associated hyperphosphorylated pol IIo as a possible link in the coordination of transcription and splicing processes

326 citations

Journal ArticleDOI
TL;DR: A model in which repeat-associated miRNAs serve as host defenses against repetitive elements, a function canonically ascribed to other classes of short RNA is suggested.
Abstract: Short RNA expression was analyzed from Dicer-positive and Dicer-knockout mouse embryonic [corrected] stem (ES) cells, using high-throughput pyrosequencing. A correlation of miRNA quantification with sequencing frequency estimates that there are 110,000 miRNAs per ES cell, the majority of which can be accounted for by six distinct miRNA loci. Four of these miRNA loci or their human homologues have demonstrated roles in cell cycle regulation or oncogenesis, suggesting that a major function of the miRNA pathway in ES cells may be to shape their distinct cell cycle. Forty-six previously uncharacterized miRNAs were identified, most of which are expressed at low levels and are less conserved than the set of known miRNAs. Low-abundance short RNAs matching all classes of repetitive elements were present in cells lacking Dicer, although the production of some SINE- and simple repeat-associated short RNAs appeared to be Dicer-dependent. These and other Dicer-dependent sequences resembled miRNAs. At a depth of sequencing that approaches the total number of 5' phosphorylated short RNAs per cell, miRNAs appeared to be Dicer's only substrate. The results presented suggest a model in which repeat-associated miRNAs serve as host defenses against repetitive elements, a function canonically ascribed to other classes of short RNA.

325 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
TL;DR: In this paper, a procedure for extracting plasmid DNA from bacterial cells is described, which is simple enough to permit the analysis by gel electrophoresis of 100 or more clones per day, yet yields DNA which is pure enough to be digestible by restriction enzymes.
Abstract: A procedure for extracting plasmid DNA from bacterial cells is described. The method is simple enough to permit the analysis by gel electrophoresis of 100 or more clones per day yet yields plasmid DNA which is pure enough to be digestible by restriction enzymes. The principle of the method is selective alkaline denaturation of high molecular weight chromosomal DNA while covalently closed circular DNA remains double-stranded. Adequate pH control is accomplished without using a pH meter. Upon neutralization, chromosomal DNA renatures to form an insoluble clot, leaving plasmid DNA in the supernatant. Large and small plasmid DNAs have been extracted by this method.

13,805 citations