scispace - formally typeset
Search or ask a question
Author

Phillip A. Sharp

Bio: Phillip A. Sharp is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: RNA & RNA splicing. The author has an hindex of 172, co-authored 614 publications receiving 117126 citations. Previous affiliations of Phillip A. Sharp include McGovern Institute for Brain Research & Medical Research Council.
Topics: RNA, RNA splicing, Gene, Transcription (biology), DNA


Papers
More filters
Journal ArticleDOI
TL;DR: Transcription in vitro from both the SV40 early and late promoters was strongly dependent on an upstream region of DNA that contains six direct GC repeats that stimulated transcription in a bidirectional fashion, at distances of 50‐200 bp.
Abstract: A series of deletion mutants of SV40 were tested for early and late promoter activity in vitro in a transcription extract prepared from HeLa cells. These mutants had previously been characterized for expression in vivo. Transcription in vitro from both the SV40 early and late promoters was strongly dependent on an upstream region of DNA that contains six direct GC repeats. Sequences spanning two or more of these repeats stimulated transcription in a bidirectional fashion, at distances of 50-200 bp. These sequences may function by mediating the activity of a specific transcriptional factor. Little effect on transcription in vitro was observed upon deletion of the 72-bp enhancer elements. With this exception, the sequence dependence of early and late transcription in vitro was similar to that observed previously in vivo, both of the region including the GC repeats and of the early TATA sequence.

104 citations

Journal ArticleDOI
TL;DR: It is suggested that the constitutive OCTA-binding factor NF-A1 can activate transcription of the Ig promoter and that B-cell-specific transcription of this promoter, at least in vitro, is partially due to a quantitative difference in the amount of OCTa-binding protein.
Abstract: The B-cell-type specificity of the immunoglobulin (Ig) heavy-chain and light-chain promoters is mediated by an octanucleotide (OCTA) element, ATGCAAAT, that is also a functional component of other RNA polymerase II promoters, such as snRNA and histone H2B promoters. Two nuclear proteins that bind specifically and with high affinity to the OCTA element have been identified. NF-A1 is present in a variety of cell types, whereas the presence of NF-A2 is essentially confined to B cells, leading to the hypothesis that NF-A2 activates cell-type-specific transcription of the Ig promoter and NF-A1 mediates the other responses of the OCTA element. Extracts of the B-cell line, BJA-B, contain high levels of NF-A2 and specifically transcribe Ig promoters. In contrast, extracts from HeLa cells transcribed the Ig promoter poorly. Surprisingly, addition of either affinity-enriched NF-A2 or NF-A1 to either a HeLa extract or a partially purified reaction system specifically stimulates the Ig promoter. This suggests that the constitutive OCTA-binding factor NF-A1 can activate transcription of the Ig promoter and that B-cell-specific transcription of this promoter, at least in vitro, is partially due to a quantitative difference in the amount of OCTA-binding protein. Because NF-A1 can stimulate Ig transcription, the inability of this factor to activate in vivo the Ig promoter to the same degree as the snRNA promoters probably reflects a difference in the context of the OCTA element in these two types of promoters.

104 citations

Journal ArticleDOI
TL;DR: The genome of many animals contained such large amounts of DNA that the possibility that all of it encoded simple, bacteria-type genes seemed unlikely, and the assumption that these simple concepts for genes were largely correct was largely correct.

104 citations

Journal ArticleDOI
TL;DR: The preferential recognition of Oct-1 over the closely related Oct-2 protein is critically influenced by a single residue on the surface of helix 1 because the introduction of this residue into theOct-2 POU homeo domain significantly enhanced its ability to form a C1 complex.
Abstract: Homeo domain proteins exhibit distinct biological functions with specificities that cannot be predicted by their sequence specificities for binding DNA. Recognition of the surface of the Oct-1 POU homeo domain provides a general model for the contribution of selective protein-protein interactions to the functional specificity of the homeo domain family of factors. The assembly of Oct-1 into a multiprotein complex on the herpes simplex virus alpha/IE enhancer is specified by the interactions of its homeo domain with ancillary factors. This complex (C1 complex) is composed of the viral alpha TIF protein (VP16), Oct-1, and one additional cellular component, the C1 factor. Variants of the Oct-1 POU homeo domain were generated by site-directed mutagenesis, which altered the residues predicted to form the exposed surface of the domain-DNA complex. Proteins with single amino acid substitutions on the surface of either helix 1 or 2 of the Oct-1 POU homeo domain had decreased abilities to form the C1 complex. The behavior of these mutants in a cooperative DNA-binding assay with alpha TIF suggested that the Oct-1 POU homeo domain is principally recognized by alpha TIF in the C1 complex. The preferential recognition of Oct-1 over the closely related Oct-2 protein is critically influenced by a single residue on the surface of helix 1 because the introduction of this residue into the Oct-2 POU homeo domain significantly enhanced its ability to form a C1 complex.

103 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
TL;DR: In this paper, a procedure for extracting plasmid DNA from bacterial cells is described, which is simple enough to permit the analysis by gel electrophoresis of 100 or more clones per day, yet yields DNA which is pure enough to be digestible by restriction enzymes.
Abstract: A procedure for extracting plasmid DNA from bacterial cells is described. The method is simple enough to permit the analysis by gel electrophoresis of 100 or more clones per day yet yields plasmid DNA which is pure enough to be digestible by restriction enzymes. The principle of the method is selective alkaline denaturation of high molecular weight chromosomal DNA while covalently closed circular DNA remains double-stranded. Adequate pH control is accomplished without using a pH meter. Upon neutralization, chromosomal DNA renatures to form an insoluble clot, leaving plasmid DNA in the supernatant. Large and small plasmid DNAs have been extracted by this method.

13,805 citations