scispace - formally typeset
Search or ask a question
Author

Phillip A. Sharp

Bio: Phillip A. Sharp is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: RNA & RNA splicing. The author has an hindex of 172, co-authored 614 publications receiving 117126 citations. Previous affiliations of Phillip A. Sharp include McGovern Institute for Brain Research & Medical Research Council.
Topics: RNA, RNA splicing, Gene, Transcription (biology), DNA


Papers
More filters
Journal ArticleDOI
TL;DR: Gen expression in murine Dicer-null adult mesenchymal stem cell lines is characterized, finding that let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor-suppressive function.
Abstract: MicroRNAs (miRNAs) are critical to proliferation, differentiation, and development. Here, we characterize gene expression in murine Dicer-null adult mesenchymal stem cell lines, a fibroblast cell type. Loss of Dicer leads to derepression of let-7 targets at levels that exceed 10-fold to 100-fold with increases in transcription. Direct and indirect targets of this miRNA belong to a mid-gestation embryonic program that encompasses known oncofetal genes as well as oncogenes not previously associated with an embryonic state. Surprisingly, this mid-gestation program represents a distinct period that occurs between the pluripotent state of the inner cell mass at embryonic day 3.5 (E3.5) and the induction of let-7 upon differentiation at E10.5. Within this mid-gestation program, we characterize the let-7 target Nr6a1, an embryonic transcriptional repressor that regulates gene expression in adult fibroblasts following miRNA loss. In total, let-7 is required for the continual suppression of embryonic gene expression in adult cells, a mechanism that may underlie its tumor-suppressive function.

46 citations

Journal ArticleDOI
TL;DR: Surprisingly, whereas the viral IE genes are expressed after high moi infection ofOct-1-deficient cells, the assembly of viral replication factories is severely impaired, revealing a second critical role for Oct-1 in HSV replication.
Abstract: Expression of the herpes simplex virus (HSV) immediate early (IE) genes is regulated by a multiprotein complex that is assembled on the TAATGARAT enhancer core element. The complex contains the cellular POU domain protein Oct-1, the viral transactivator VP16, and the cellular cofactor host cell factor 1. The current model suggests that the assembly depends on recognition of the core element by Oct-1. Here, HSV infection of Oct-1-deficient mouse embryonic fibroblast cells demonstrates that Oct-1 is critical for IE gene expression at low multiplicities of infection (moi). However, the protein is not essential for IE gene expression at high moi, indicating that VP16-mediated transcriptional induction through other IE regulatory elements is also important. This induction depends, at least in part, on the GA-binding protein binding elements that are present in each IE enhancer domain. Surprisingly, whereas the viral IE genes are expressed after high moi infection of Oct-1-deficient cells, the assembly of viral replication factories is severely impaired, revealing a second critical role for Oct-1 in HSV replication. The results have implications for both the HSV lytic and latency-reactivation cycles.

46 citations

Journal ArticleDOI
01 Aug 1978-Cell
TL;DR: Using long reverse transcripts of Mo-MuLV, a region of nonhomology has been mapped by electron microscopic analysis of heteroduplexes formed with HIX 35S virion RNA by providing an internal visual marker for the 3' end of the genome.

46 citations

Journal ArticleDOI
TL;DR: The results suggest that the DNA binding specificities of the Myc family and non-Myc family b-HLH-LZ proteins, in the context of the cellular genes involved in Myc-induced transformation, are shared.
Abstract: Many basic-helix-loop-helix-leucine zipper (b-HLH-LZ) proteins, including the Myc family and non-Myc family, bind a common DNA sequence CACGTG, yet have quite different biological actions. Myc binds this sequence as a heterodimer with Max in the activation of both transcription and transformation. The Myc family members Mad and Mxi1 are known to suppress Myc-induced transcription and transformation and to dimerize with Max to form ternary complexes with the mammalian Sin3 transcriptional corepressor (mSin3). The b-HLH-LZ domain of TFEB, which cannot heterodimerize within the Myc family, does not suppress Myc-induced transcription or transformation. However, transfer of a 25- to 36-aa region from Mad or Mxi1, which interacts with mSin3, to the b-HLH-LZ of TFEB, mediated profound suppression of Myc-induced transcription and transformation. These results suggest that the DNA binding specificities of the Myc family and non-Myc family b-HLH-LZ proteins, in the context of the cellular genes involved in Myc-induced transformation, are shared. The results also demonstrate that targeting mSin3 to CACGTG sites via a non-Myc family DNA binding domain is sufficient to oppose Myc activity in growth regulation.

46 citations

Journal ArticleDOI
TL;DR: Five binding sites for sequence-specific DNA-binding proteins in the Friend virus enhancer region bind to three regions of the enhancer shown by genetic analysis to encode disease specificity and thus are candidates to mediate the tissue-specific expression and distinct disease specificities encoded by these virus enhancers.
Abstract: Nondefective Friend murine leukemia virus (MuLV) causes erythroleukemia when injected into newborn NFS mice, while Moloney MuLV causes T-cell lymphoma. Exchange of the Friend virus enhancer region, a sequence of about 180 nucleotides including the direct repeat and a short 3'-adjacent segment, for the corresponding region in Moloney MuLV confers the ability to cause erythroid disease on Moloney MuLV. We have used the electrophoretic mobility shift assay and methylation interference analysis to identify cellular factors which bind to the Friend virus enhancer region and compared these with factors, previously identified, that bind to the Moloney virus direct repeat (N. A. Speck and D. Baltimore, Mol. Cell. Biol. 7:1101-1110, 1987). We identified five binding sites for sequence-specific DNA-binding proteins in the Friend virus enhancer region. While some binding sites are present in both the Moloney and Friend virus enhancers, both viruses contain unique sites not present in the other. Although none of the factors identified in this report which bind to these unique sites are present exclusively in T cells or erythroid cells, they bind to three regions of the enhancer shown by genetic analysis to encode disease specificity and thus are candidates to mediate the tissue-specific expression and distinct disease specificities encoded by these virus enhancer elements.

46 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2004-Cell
TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.

32,946 citations

Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
23 Jan 2009-Cell
TL;DR: The current understanding of miRNA target recognition in animals is outlined and the widespread impact of miRNAs on both the expression and evolution of protein-coding genes is discussed.

18,036 citations

Journal ArticleDOI
TL;DR: In this paper, a procedure for extracting plasmid DNA from bacterial cells is described, which is simple enough to permit the analysis by gel electrophoresis of 100 or more clones per day, yet yields DNA which is pure enough to be digestible by restriction enzymes.
Abstract: A procedure for extracting plasmid DNA from bacterial cells is described. The method is simple enough to permit the analysis by gel electrophoresis of 100 or more clones per day yet yields plasmid DNA which is pure enough to be digestible by restriction enzymes. The principle of the method is selective alkaline denaturation of high molecular weight chromosomal DNA while covalently closed circular DNA remains double-stranded. Adequate pH control is accomplished without using a pH meter. Upon neutralization, chromosomal DNA renatures to form an insoluble clot, leaving plasmid DNA in the supernatant. Large and small plasmid DNAs have been extracted by this method.

13,805 citations