scispace - formally typeset
Search or ask a question
Author

Phillip D. Fletcher

Other affiliations: University College London
Bio: Phillip D. Fletcher is an academic researcher from UCL Institute of Neurology. The author has contributed to research in topics: Semantic dementia & Frontotemporal dementia. The author has an hindex of 14, co-authored 24 publications receiving 732 citations. Previous affiliations of Phillip D. Fletcher include University College London.

Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that these apparently diverse clinical phenotypes of AD variant syndromes reflect the differential involvement of a common core temporoparietofrontal network that is vulnerable to AD.
Abstract: Variant syndromes of Alzheimer disease (AD), led by deficits that extend beyond memory dysfunction, are of considerable clinical and neurobiological importance. Such syndromes present major challenges for both diagnosis and monitoring of disease, and serve to illustrate the apparent paradox of a clinically diverse group of disorders underpinned by a common histopathological substrate. This Review focuses on the most common variant AD phenotypes: posterior cortical atrophy, logopenic variant primary progressive aphasia and frontal variant AD. The neuroanatomical, molecular and pathological correlates of these phenotypes are highlighted, and the heterogeneous clinical presentations of the syndromes are discussed in the context of the emerging network paradigm of neurodegenerative disease. We argue that these apparently diverse clinical phenotypes reflect the differential involvement of a common core temporoparietofrontal network that is vulnerable to AD. According to this interpretation, the network signatures corresponding to AD variant syndromes are produced by genetic and other modulating factors that have yet to be fully characterized. The clinical and neurobiological implications of this network paradigm in the quest for disease-modifying treatments are also explored.

179 citations

Journal ArticleDOI
TL;DR: A clinical approach to the progressive aphasias is presented, based on the experience of these disorders and directed at non-specialists, and a prospect for future progress is concluded, emphasising generic information processing deficits and novel pathophysiological biomarkers.
Abstract: The primary progressive aphasias are a heterogeneous group of focal 'language-led' dementias that pose substantial challenges for diagnosis and management Here we present a clinical approach to the progressive aphasias, based on our experience of these disorders and directed at non-specialists We first outline a framework for assessing language, tailored to the common presentations of progressive aphasia We then consider the defining features of the canonical progressive nonfluent, semantic and logopenic aphasic syndromes, including 'clinical pearls' that we have found diagnostically useful and neuroanatomical and other key associations of each syndrome We review potential diagnostic pitfalls and problematic presentations not well captured by conventional classifications and propose a diagnostic 'roadmap' After outlining principles of management, we conclude with a prospect for future progress in these diseases, emphasising generic information processing deficits and novel pathophysiological biomarkers

159 citations

Journal ArticleDOI
01 Nov 2015-Brain
TL;DR: Using a semi-structured caregiver questionnaire and MRI voxel-based morphometry in patients with frontotemporal degeneration or Alzheimer’s disease, Fletcher et al. show that symptoms are underpinned by atrophy in a distributed thalamo-temporo-insular network implicated in somatosensory processing.
Abstract: Symptoms suggesting altered processing of pain and temperature have been described in dementia diseases and may contribute importantly to clinical phenotypes, particularly in the frontotemporal lobar degeneration spectrum, but the basis for these symptoms has not been characterized in detail. Here we analysed pain and temperature symptoms using a semi-structured caregiver questionnaire recording altered behavioural responsiveness to pain or temperature for a cohort of patients with frontotemporal lobar degeneration (n = 58, 25 female, aged 52-84 years, representing the major clinical syndromes and representative pathogenic mutations in the C9orf72 and MAPT genes) and a comparison cohort of patients with amnestic Alzheimer's disease (n = 20, eight female, aged 53-74 years). Neuroanatomical associations were assessed using blinded visual rating and voxel-based morphometry of patients' brain magnetic resonance images. Certain syndromic signatures were identified: pain and temperature symptoms were particularly prevalent in behavioural variant frontotemporal dementia (71% of cases) and semantic dementia (65% of cases) and in association with C9orf72 mutations (6/6 cases), but also developed in Alzheimer's disease (45% of cases) and progressive non-fluent aphasia (25% of cases). While altered temperature responsiveness was more common than altered pain responsiveness across syndromes, blunted responsiveness to pain and temperature was particularly associated with behavioural variant frontotemporal dementia (40% of symptomatic cases) and heightened responsiveness with semantic dementia (73% of symptomatic cases) and Alzheimer's disease (78% of symptomatic cases). In the voxel-based morphometry analysis of the frontotemporal lobar degeneration cohort, pain and temperature symptoms were associated with grey matter loss in a right-lateralized network including insula (P < 0.05 corrected for multiple voxel-wise comparisons within the prespecified anatomical region of interest) and anterior temporal cortex (P < 0.001 uncorrected over whole brain) previously implicated in processing homeostatic signals. Pain and temperature symptoms accompanying C9orf72 mutations were specifically associated with posterior thalamic atrophy (P < 0.05 corrected for multiple voxel-wise comparisons within the prespecified anatomical region of interest). Together the findings suggest candidate cognitive and neuroanatomical bases for these salient but under-appreciated phenotypic features of the dementias, with wider implications for the homeostatic pathophysiology and clinical management of neurodegenerative diseases.

88 citations

Journal ArticleDOI
TL;DR: In this article, trajectories of WM change using diffusion tensor imaging (DTI) were reported in a cohort with behavioral variant frontotemporal dementia (bvFTD), and sample size estimates using FA change were substantially lower than neuropsychological or whole brain measures of change.
Abstract: Objective Novel biomarkers for monitoring progression in neurodegenerative conditions are needed. Measurement of microstructural changes in white matter (WM) using diffusion tensor imaging (DTI) may be a useful outcome measure. Here we report trajectories of WM change using serial DTI in a cohort with behavioral variant frontotemporal dementia (bvFTD). Methods Twenty-three patients with bvFTD (12 having genetic mutations), and 18 age-matched control participants were assessed using DTI and neuropsychological batteries at baseline and ∼1.3 years later. Baseline and follow-up DTI scans were registered using a groupwise approach. Annualized rates of change for DTI metrics, neuropsychological measures, and whole brain volume were calculated. DTI metric performances were compared, and sample sizes for potential clinical trials were calculated. Results In the bvFTD group as a whole, rates of change in fractional anisotropy (FA) and mean diffusivity (MD) within the right paracallosal cingulum were greatest (FA: −6.8%/yr, p < 0.001; MD: 2.9%/yr, p = 0.01). MAPT carriers had the greatest change within left uncinate fasciculus (FA: −7.9%/yr, p < 0.001; MD: 10.9%/yr, p < 0.001); sporadic bvFTD and C9ORF72 carriers had the greatest change within right paracallosal cingulum (sporadic bvFTD, FA: −6.7%/yr, p < 0.001; MD: 3.8%/yr, p = 0.001; C9ORF72, FA: −6.8%/yr, p = 0.004). Sample size estimates using FA change were substantially lower than neuropsychological or whole brain measures of change. Interpretation Serial DTI scans may be useful for measuring disease progression in bvFTD, with particular trajectories of WM damage emerging. Sample size calculations suggest that longitudinal DTI may be a useful biomarker in future clinical trials. ANN NEUROL 2015;77:33–46

79 citations

Journal ArticleDOI
TL;DR: A candidate brain substrate for musicophilia is suggested as a signature of distributed network damage that may reflect a shift of hedonic processing toward more abstract (non-social) stimuli, with some specificity for particular neurodegenerative pathologies.
Abstract: Musicophilia, or abnormal craving for music, is a poorly understood phenomenon that has been associated in particular with focal degeneration of the temporal lobes. Here we addressed the brain basis of musicophilia using voxel-based morphometry (VBM) on MR volumetric brain images in a retrospectively ascertained cohort of patients meeting clinical consensus criteria for frontotemporal lobar degeneration: of 37 cases ascertained, 12 had musicophilia, and 25 did not exhibit the phenomenon. The syndrome of semantic dementia was relatively over-represented among the musicophilic subgroup. A VBM analysis revealed significantly increased regional gray matter volume in left posterior hippocampus in the musicophilic subgroup relative to the non-musicophilic group (p < 0.05 corrected for regional comparisons); at a relaxed significance threshold (p < 0.001 uncorrected across the brain volume) musicophilia was associated with additional relative sparing of regional gray matter in other temporal lobe and prefrontal areas and atrophy of gray matter in posterior parietal and orbitofrontal areas. The present findings suggest a candidate brain substrate for musicophilia as a signature of distributed network damage that may reflect a shift of hedonic processing toward more abstract (non-social) stimuli, with some specificity for particular neurodegenerative pathologies.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is proposed that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease.
Abstract: In the past 8 years, both the International Working Group (IWG) and the US National Institute on Aging-Alzheimer's Association have contributed criteria for the diagnosis of Alzheimer's disease (AD) that better define clinical phenotypes and integrate biomarkers into the diagnostic process, covering the full staging of the disease. This Position Paper considers the strengths and limitations of the IWG research diagnostic criteria and proposes advances to improve the diagnostic framework. On the basis of these refinements, the diagnosis of AD can be simplified, requiring the presence of an appropriate clinical AD phenotype (typical or atypical) and a pathophysiological biomarker consistent with the presence of Alzheimer's pathology. We propose that downstream topographical biomarkers of the disease, such as volumetric MRI and fluorodeoxyglucose PET, might better serve in the measurement and monitoring of the course of disease. This paper also elaborates on the specific diagnostic criteria for atypical forms of AD, for mixed AD, and for the preclinical states of AD.

2,581 citations

Journal ArticleDOI

717 citations

Journal Article
TL;DR: Considering its massive scope, the book is of modest length, and with his emphasis on heuristic value, one may assume that this is just what Dr. Reiser intended.
Abstract: Reiser directs his message to workers at opposite ends of the behavioral spectrum: biologists and analysts. For many of the readers trained in the \"biopsychosocial\" era, however, Dr. Reiser's conceptual thrust may fall on already sensitized ears. Considering its massive scope, the book is of modest length. It raises more questions than it answers. And with his emphasis on heuristic value, one may assume that this is just what Dr. Reiser intended.

415 citations

Journal ArticleDOI
TL;DR: According to currently emerging cell biological concepts, tau might play a role in the regulation of neuronal plasticity in a wide array of neuronal networks and in addition, it might be involved in regulating genome stability.

410 citations