scispace - formally typeset
Search or ask a question
Author

Phillip Pegion

Bio: Phillip Pegion is an academic researcher from Goddard Space Flight Center. The author has contributed to research in topics: Sea surface temperature & Climate model. The author has an hindex of 3, co-authored 3 publications receiving 252 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented the first WAMME experiment and evaluated the performance of the WAMme general circulation models in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales.
Abstract: This paper briefly presents the West African Monsoon (WAM) Modeling and Evaluation Project (WAMME) and evaluates WAMME general circulation models’ (GCM) performances in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales in the first WAMME experiment. The analyses indicate that models with specified sea surface temperature generally have reasonable simulations of the pattern of spatial distribution of WAM seasonal mean precipitation and surface temperature as well as the averaged zonal wind in latitude-height cross-section and low level circulation. But there are large differences among models in simulating spatial correlation, intensity, and variance of precipitation compared with observations. Furthermore, the majority of models fail to produce proper intensities of the African Easterly Jet (AEJ) and the tropical easterly jet. AMMA Land Surface Model Intercomparison Project (ALMIP) data are used to analyze the association between simulated surface processes and the WAM and to investigate the WAM mechanism. It has been identified that the spatial distributions of surface sensible heat flux, surface temperature, and moisture convergence are closely associated with the simulated spatial distribution of precipitation; while surface latent heat flux is closely associated with the AEJ and contributes to divergence in AEJ simulation. Common empirical orthogonal functions (CEOF) analysis is applied to characterize the WAM precipitation evolution and has identified a major WAM precipitation mode and two temperature modes (Sahara mode and Sahel mode). Results indicate that the WAMME models produce reasonable temporal evolutions of major CEOF modes but have deficiencies/uncertainties in producing variances explained by major modes. Furthermore, the CEOF analysis shows that WAM precipitation evolution is closely related to the enhanced Sahara mode and the weakened Sahel mode, supporting the evidence revealed in the analysis using ALMIP data. An analysis of variability of CEOF modes suggests that the Sahara mode leads the WAM evolution, and divergence in simulating this mode contributes to discrepancies in the precipitation simulation.

136 citations

Journal ArticleDOI
TL;DR: The authors used the Regional Atmospheric Modeling System (RAMS) to generate a regional climate model (RCM) of the contiguous United States and Mexico to represent North American summer climate beyond the driving global atmospheric reanalysis.
Abstract: Fifty-three years of the NCEP–NCAR Reanalysis I are dynamically downscaled using the Regional Atmospheric Modeling System (RAMS) to generate a regional climate model (RCM) climatology of the contiguous United States and Mexico. Data from the RAMS simulations are compared to the recently released North American Regional Reanalysis (NARR), as well as observed precipitation and temperature data. The RAMS simulations show the value added by using a RCM in a process study framework to represent North American summer climate beyond the driving global atmospheric reanalysis. Because of its enhanced representation of the land surface topography, the diurnal cycle of convective rainfall is present. This diurnal cycle largely governs the transitions associated with the evolution of the North American monsoon with regards to rainfall, the surface energy budget, and surface temperature. The lower frequency modes of convective rainfall, though weaker, account for rainfall variability at a remote distance from...

120 citations

Journal Article
TL;DR: In this paper, the authors present the scientific challenge in West African monsoon simulation and discuss the West African Monsoon Modeling and Evaluation project (WAMME) initiative and its approaches to improve WAM simulations.
Abstract: This paper presents the scientific challenge in West African monsoon (WAM) simulation and discusses the West African Monsoon Modeling and Evaluation project (WAMME) initiative and its approaches to improve WAM simulations. Major scientific highlights from the first WAMME model comparison are the focus of the paper. Based on the first WAMME experiment, the WAMME models' performance is evaluated with precipitation being the major focus. The analyses indicate that the models with specified SST generally have reasonable simulations of the mean spatial distribution of WAM precipitation but largely fail to produce proper daily precipitation frequency distributions. WAMME multi-model ensembles, however, produce excellent WAM precipitation spatial distribution, intensity, and temporal evolution, better than Reanalysis. In addition, the WAMME is the first project consisting of the most state-of-the-art general circulation models (GCMs) and regional climate models (RCMs) to collectively investigate the WAM/external forcing feedbacks. Cases based on the first WAMME experiment are presented to demonstrate scientific challenges for further investigation of WAM, SST, land, and aerosol interactions. The analyses in this article provide a quantitative assessment on model uncertainty, identify main issues in WAM modeling, and provide a good starting point as benchmarks for future studies.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, two statistical downscaling methods, the daily bias corrected Spatial Downscaling (BCSD) and the Multivariate Adapted Constructed Analogs (MACA), were validated over the western US using global reanalysis data.
Abstract: Place-based data is required in wildfire analyses, particularly in regions of diverse terrain that foster not only strong gradients in meteorological variables, but also complex fire behaviour. However, a majority of downscaling methods are inappropriate for wildfire application due to the lack of daily timescales and variables such as humidity and winds that are important for fuel flammability and fire spread. Two statistical downscaling methods, the daily Bias corrected Spatial Downscaling (BCSD) and the Multivariate Adapted Constructed Analogs (MACA) that directly incorporate daily data from global climate models, were validated over the western US using global reanalysis data. While both methods outperformed results obtained from direct interpolation from reanalysis, MACA exhibited additional skill in temperature, humidity, wind, and precipitation due to its ability to jointly downscale temperature and dew point temperature, and its use of analog patterns rather than interpolation. Both downscaling methods exhibited value added information in tracking fire danger indices and periods of extreme fire danger; however, MACA outperformed the daily BCSD due to its ability to more accurately capture relative humidity and winds. Copyright © 2011 Royal Meteorological Society

637 citations

Journal ArticleDOI
TL;DR: A publicly available, long-term (1915-2011) hydrologically consistent dataset for the conterminous United States, intended to aid in studies of water and energy exchanges at the land surface, is described in this article.
Abstract: This paper describes a publicly available, long-term (1915–2011), hydrologically consistent dataset for the conterminous United States, intended to aid in studies of water and energy exchanges at the land surface. These data are gridded at a spatial resolution of latitude/longitude and are derived from daily temperature and precipitation observations from approximately 20 000 NOAA Cooperative Observer (COOP) stations. The available meteorological data include temperature, precipitation, and wind, as well as derived humidity and downwelling solar and infrared radiation estimated via algorithms that index these quantities to the daily mean temperature, temperature range, and precipitation, and disaggregate them to 3-hourly time steps. Furthermore, the authors employ the variable infiltration capacity (VIC) model to produce 3-hourly estimates of soil moisture, snow water equivalent, discharge, and surface heat fluxes. Relative to an earlier similar dataset by Maurer and others, the improved dataset h...

591 citations

Journal ArticleDOI
TL;DR: In this article, an ensemble of regional climate simulations is analyzed to evaluate the ability of 10 regional climate models (RCMs) and their ensemble average to simulate precipitation over Africa, using a range of time scales, including seasonal means, and annual and diurnal cycles.
Abstract: An ensemble of regional climate simulations is analyzed to evaluate the ability of 10 regional climate models (RCMs) and their ensemble average to simulate precipitation over Africa. All RCMs use a similar domain and spatial resolution of ~50 km and are driven by the ECMWF Interim Re-Analysis (ERA-Interim) (1989–2008). They constitute the first set of simulations in the Coordinated Regional Downscaling Experiment in Africa (CORDEX-Africa) project. Simulated precipitation is evaluated at a range of time scales, including seasonal means, and annual and diurnal cycles, against a number of detailed observational datasets. All RCMs simulate the seasonal mean and annual cycle quite accurately, although individual models can exhibit significant biases in some subregions and seasons. The multimodel average generally outperforms any individual simulation, showing biases of similar magnitude to differences across a number of observational datasets. Moreover, many of the RCMs significantly improve the precip...

565 citations

Journal ArticleDOI
TL;DR: In this paper, an 8 km-resolution atmospheric reanalysis over France performed with the Safran-gauge-based analysis system for the period 1958-2008 is presented.
Abstract: The assessment of regional climate change requires the development of reference long-term retrospective meteorological datasets. This article presents an 8-km-resolution atmospheric reanalysis over France performed with the the Safran-gauge-based analysis system for the period 1958–2008. Climatological features of the Safran 50-year analysis – long-term mean values, inter-annual and seasonal variability – are first presented for all computed variables: rainfall, snowfall, mean air temperature, specific humidity, wind speed and solar and infrared radiation. The spatial patterns of precipitation, minimum and maximum temperature are compared with another spatialization method, and the temporal consistency of the reanalysis is assessed through various validation experiments with both dependent and independent data. These experiments demonstrate the overall robustness of the Safran reanalysis and the improvement of its quality with time, in connection with the sharp increase in the observation network density that occurred in the 1990s. They also show the differentiated sensitivity of variables to the number of available ground observations, with precipitation and air temperature being the more robust ones. The comparison of trends from the reanalysis with those from homogenized series finally shows that if spatial patterns are globally consistent with both approaches, care must be taken when using literal values from the reanalysis and corresponding statistical significance in climate change detection studies. The Safran 50-year atmospheric reanalysis constitutes a long-term forcing datasets for land surface schemes and thus enables the simulation of the past 50 years of water resources over France. Copyright © 2009 Royal Meteorological Society

496 citations