scispace - formally typeset
Search or ask a question
Author

Phillip Sprangle

Bio: Phillip Sprangle is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Laser & Electron. The author has an hindex of 62, co-authored 410 publications receiving 15029 citations. Previous affiliations of Phillip Sprangle include United States Naval Research Laboratory & United States Department of the Navy.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the physics issues relevant to the plasma wakefield accelerator, the plasma beat-wave accelerator, including the self-modulated regime, and wakefield accelerators driven by multiple electron or laser pulses is given in this article.
Abstract: An overview is given of the physics issues relevant to the plasma wakefield accelerator, the plasma beat-wave accelerator, the laser wakefield accelerator, including the self-modulated regime, and wakefield accelerators driven by multiple electron or laser pulses. Basic properties of linear and nonlinear plasma waves are discussed, as well as the trapping and acceleration of electrons in the plasma wave. Formulas are presented for the accelerating field and the energy gain in the various accelerator configurations. The propagation of the drive electron or laser beams is discussed, including limitations imposed by key instabilities and methods for optically guiding laser pulses. Recent experimental results are summarized.

1,066 citations

Journal ArticleDOI
TL;DR: A nonlinear theory of intense laser-plasma interactions is developed and used to describe relativistic optical guiding, coherent harmonic radiation production, and nonlinear plasma wakefield generation.
Abstract: A nonlinear theory of intense laser-plasma interactions is developed and used to describe relativistic optical guiding, coherent harmonic radiation production, and nonlinear plasma wakefield generation. Relativistic optical guiding is found to be ineffective in preventing the leading portion (\ensuremath{\le} a plasma wavelength) of a laser pulse from diffracting. Coherent harmonic generation is found to be most efficient for short laser pulses. Optical guiding and harmonic generation may be enhanced by the presence of large amplitude plasma wakefields. These phenomena may be important in laser-driven plasma accelerators, x-ray sources, and fusion schemes.

444 citations

Journal ArticleDOI
TL;DR: In this article, the wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived, and the source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms.
Abstract: Several features of intense, short-pulse (/spl lsim/1 ps) laser propagation in gases undergoing ionization and in plasmas are reviewed, discussed, and analyzed. The wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived. The source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms. In gases, the propagation of high-power (near the critical power) laser pulses is considered including the effects of diffraction, nonlinear self-focusing, ionization, and plasma generation. Self-guided solutions and the stability of these solutions are discussed. In plasmas, optical guiding by relativistic effects, ponderomotive effects, and preformed density channels is considered. The self consistent plasma response is discussed, including plasma wave effects and instabilities such as self-modulation. Recent experiments on the guiding of laser pulses in gases and in plasmas are briefly summarized.

431 citations

Journal ArticleDOI
TL;DR: In this paper, an injector and an accelerator are analyzed that uses three collinear laser pulses in a plasma: an intense pump pulse, which generates a large wake field, and two counterpropagating injection pulses, which injects electrons into the fast wake field for acceleration.
Abstract: An injector and accelerator is analyzed that uses three collinear laser pulses in a plasma: an intense pump pulse, which generates a large wake field $(\ensuremath{\ge}20\mathrm{GV}/\mathrm{m})$, and two counterpropagating injection pulses. When the injection pulses collide, a slow phase velocity beat wave is generated that injects electrons into the fast wake field for acceleration. Particle tracking simulations in 1D with injection pulse intensities near ${10}^{17}\mathrm{W}/\mathrm{cm}{}^{2}$ indicate the production of relativistic electrons with bunch durations as short as 3 fs, energy spreads as small as 0.3%, and densities as high as ${10}^{18}\mathrm{cm}{}^{\ensuremath{-}3}$.

394 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive theory is developed to describe the nonlinear Thomson scattering of intense laser fields from beams and plasmas, valid for linearly or circularly polarized incident laser fields of arbitrary intensities and for electrons of arbitrary energies.
Abstract: A comprehensive theory is developed to describe the nonlinear Thomson scattering of intense laser fields from beams and plasmas. This theory is valid for linearly or circularly polarized incident laser fields of arbitrary intensities and for electrons of arbitrary energies. Explicit expressions for the intensity distributions of the scattered radiation are calculated and numerically evaluated. The space-charge electrostatic potential, which is important in high-density plasmas and prevents the axial drift of electrons, is included self-consistently. Various properties of the scattered radiation are examined, including the linewidth, angular distribution, and the behavior of the radiation spectra at ultrahigh intensities. Nonideal effects, such as electron-energy spread and beam emittance, are discussed. A laser synchrotron source (LSS), based on nonlinear Thomson scattering, may provide a practical method for generating tunable, near-monochromatic, well-collimated, short-pulse x rays in a compact, relatively inexpensive source. Two examples of possible LSS configurations are presented: an electron-beam LSS generating hard (30-keV, 0.4-\AA{}) x rays and a plasma LSS generating soft (0.3-keV, 40-\AA{}) x rays. These LSS configurations are capable of generating ultrashort (\ensuremath{\sim}1-ps) x-ray pulses with high peak flux (\ensuremath{\gtrsim}${10}^{21}$ photons/s) and brightness [\ensuremath{\gtrsim}${10}^{19}$ photons /(s ${\mathrm{mm}}^{2}$ ${\mathrm{mrad}}^{2}$), 0.1% bandwidth].

367 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Abstract: The rise time of intense radiation determines the maximum field strength atoms can be exposed to before their polarizability dramatically drops due to the detachment of an outer electron. Recent progress in ultrafast optics has allowed the generation of ultraintense light pulses comprising merely a few field oscillation cycles. The arising intensity gradient allows electrons to survive in their bound atomic state up to external field strengths many times higher than the binding Coulomb field and gives rise to ionization rates comparable to the light frequency, resulting in a significant extension of the frontiers of nonlinear optics and (nonrelativistic) high-field physics. Implications include the generation of coherent harmonic radiation up to kiloelectronvolt photon energies and control of the atomic dipole moment on a subfemtosecond $(1{\mathrm{f}\mathrm{s}=10}^{\mathrm{\ensuremath{-}}15}\mathrm{}\mathrm{s})$ time scale. This review presents the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discusses the impact of these pulses on high-field physics. Particular emphasis is placed on high-order harmonic emission and single subfemtosecond extreme ultraviolet/x-ray pulse generation. These as well as other strong-field processes are governed directly by the electric-field evolution, and hence their full control requires access to the (absolute) phase of the light carrier. We shall discuss routes to its determination and control, which will, for the first time, allow access to the electromagnetic fields in light waves and control of high-field interactions with never-before-achieved precision.

2,547 citations

Journal ArticleDOI
TL;DR: In this paper, the main aspects of ultrashort laser pulse filamentation in various transparent media such as air (gases), transparent solids and liquids are introduced and discussed.

2,282 citations

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: It is demonstrated that this randomization of electrons in phase space can be suppressed and that the quality of the electron beams can be dramatically enhanced.
Abstract: Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

1,854 citations

Journal ArticleDOI
08 Jul 2004-Nature
TL;DR: A laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) and opens the way for compact and tunable high-brightness sources of electrons and radiation.
Abstract: Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m-1 (refs 1–3) These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest in laser accelerators4,5 as compact next-generation sources of energetic electrons and radiation To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse The ensuing short acceleration distance results in low-energy beams with 100 per cent electron energy spread1,2,3, which limits potential applications Here we demonstrate a laser accelerator that produces electron beams with an energy spread of a few per cent, low emittance and increased energy (more than 109 electrons above 80 MeV) Our technique involves the use of a preformed plasma density channel to guide a relativistically intense laser, resulting in a longer propagation distance The results open the way for compact and tunable high-brightness sources of electrons and radiation

1,749 citations