scispace - formally typeset
Search or ask a question
Author

Phillipe Maeder

Bio: Phillipe Maeder is an academic researcher from University Hospital of Lausanne. The author has contributed to research in topics: Temozolomide & Tolerability. The author has an hindex of 1, co-authored 1 publications receiving 778 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This regimen of concomitant chemoradiotherapy followed by adjuvant chemotherapy may prolong the survival of patients with glioblastoma.
Abstract: PURPOSE: Temozolomide is a novel oral alkylating agent with demonstrated efficacy as second-line therapy for patients with recurrent anaplastic astrocytoma and glioblastoma multiforme (GBM). This phase II study was performed to determine the safety, tolerability, and efficacy of concomitant radiation plus temozolomide therapy followed by adjuvant temozolomide therapy in patients with newly diagnosed GBM. PATIENTS AND METHODS: Sixty-four patients were enrolled onto this open-label, phase II trial. Temozolomide (75 mg/m2/d × 7 d/wk for 6 weeks) was administered orally concomitant with fractionated radiotherapy (60 Gy total dose: 2 Gy × 5 d/wk for 6 weeks) followed by temozolomide monotherapy (200 mg/m2/d × 5 days, every 28 days for six cycles). The primary end points were safety and tolerability, and the secondary end point was overall survival. RESULTS: Concomitant radiation plus temozolomide therapy was safe and well tolerated. Nonhematologic toxicities were rare and mild to moderate in severity. During t...

810 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity.
Abstract: methods Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. results A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients.

16,653 citations

Journal ArticleDOI
TL;DR: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up, and a benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years.
Abstract: BACKGROUND: In 2004, a randomised phase III trial by the European Organisation for Research and Treatment of Cancer (EORTC) and National Cancer Institute of Canada Clinical Trials Group (NCIC) reported improved median and 2-year survival for patients with glioblastoma treated with concomitant and adjuvant temozolomide and radiotherapy. We report the final results with a median follow-up of more than 5 years. METHODS: Adult patients with newly diagnosed glioblastoma were randomly assigned to receive either standard radiotherapy or identical radiotherapy with concomitant temozolomide followed by up to six cycles of adjuvant temozolomide. The methylation status of the methyl-guanine methyl transferase gene, MGMT, was determined retrospectively from the tumour tissue of 206 patients. The primary endpoint was overall survival. Analyses were by intention to treat. This trial is registered with Clinicaltrials.gov, number NCT00006353. FINDINGS: Between Aug 17, 2000, and March 22, 2002, 573 patients were assigned to treatment. 278 (97%) of 286 patients in the radiotherapy alone group and 254 (89%) of 287 in the combined-treatment group died during 5 years of follow-up. Overall survival was 27.2% (95% CI 22.2-32.5) at 2 years, 16.0% (12.0-20.6) at 3 years, 12.1% (8.5-16.4) at 4 years, and 9.8% (6.4-14.0) at 5 years with temozolomide, versus 10.9% (7.6-14.8), 4.4% (2.4-7.2), 3.0% (1.4-5.7), and 1.9% (0.6-4.4) with radiotherapy alone (hazard ratio 0.6, 95% CI 0.5-0.7; p<0.0001). A benefit of combined therapy was recorded in all clinical prognostic subgroups, including patients aged 60-70 years. Methylation of the MGMT promoter was the strongest predictor for outcome and benefit from temozolomide chemotherapy. INTERPRETATION: Benefits of adjuvant temozolomide with radiotherapy lasted throughout 5 years of follow-up. A few patients in favourable prognostic categories survive longer than 5 years. MGMT methylation status identifies patients most likely to benefit from the addition of temozolomide. FUNDING: EORTC, NCIC, Nelia and Amadeo Barletta Foundation, Schering-Plough.

6,161 citations

Journal ArticleDOI
TL;DR: Critical issues that must be addressed include the need for more selective and effective boron delivery agents, the development of methods to provide semiquantitative estimates of tumor borons content before treatment, improvements in clinical implementation of BNCT, and a need for randomized clinical trials with an unequivocal demonstration of therapeutic efficacy.
Abstract: Background: Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield high linear energy transfer α particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high-grade gliomas and either cutaneous primaries or cerebral metastases of melanoma, most recently, head and neck and liver cancer. Neutron sources for BNCT currently are limited to nuclear reactors and these are available in the United States, Japan, several European countries, and Argentina. Accelerators also can be used to produce epithermal neutrons and these are being developed in several countries, but none are currently being used for BNCT. Boron Delivery Agents: Two boron drugs have been used clinically, sodium borocaptate (Na 2 B 12 H 11 SH) and a dihydroxyboryl derivative of phenylalanine called boronophenylalanine. The major challenge in the development of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations (∼20 μg/g tumor) sufficient to deliver therapeutic doses of radiation to the tumor with minimal normal tissue toxicity. Over the past 20 years, other classes of boron-containing compounds have been designed and synthesized that include boron-containing amino acids, biochemical precursors of nucleic acids, DNA-binding molecules, and porphyrin derivatives. High molecular weight delivery agents include monoclonal antibodies and their fragments, which can recognize a tumor-associated epitope, such as epidermal growth factor, and liposomes. However, it is unlikely that any single agent will target all or even most of the tumor cells, and most likely, combinations of agents will be required and their delivery will have to be optimized. Clinical Trials: Current or recently completed clinical trials have been carried out in Japan, Europe, and the United States. The vast majority of patients have had high-grade gliomas. Treatment has consisted first of “debulking” surgery to remove as much of the tumor as possible, followed by BNCT at varying times after surgery. Sodium borocaptate and boronophenylalanine administered i.v. have been used as the boron delivery agents. The best survival data from these studies are at least comparable with those obtained by current standard therapy for glioblastoma multiforme, and the safety of the procedure has been established. Conclusions: Critical issues that must be addressed include the need for more selective and effective boron delivery agents, the development of methods to provide semiquantitative estimates of tumor boron content before treatment, improvements in clinical implementation of BNCT, and a need for randomized clinical trials with an unequivocal demonstration of therapeutic efficacy. If these issues are adequately addressed, then BNCT could move forward as a treatment modality.

904 citations

Journal ArticleDOI
TL;DR: The association of the epigenetic inactivation of the DNA repair gene MGMT with better outcome in this homogenous cohort may have important implications for the design of future trials and supports efforts to deplete MGMT by O-6-benzylguanine, a noncytotoxic substrate of this enzyme.
Abstract: Purpose: In the setting of a prospective clinical trial, we determined the predictive value of the methylation status of the O-6-methylguanine-DNA methyltransferase ( MGMT ) promoter for outcome in glioblastoma patients treated with the alkylating agent temozolomide. Expression of this excision repair enzyme has been associated with resistance to alkylating chemotherapy. Experimental Design: The methylation status of MGMT in the tumor biopsies was evaluated in 38 patients undergoing resection for newly diagnosed glioblastoma and enrolled in a Phase II trial testing concomitant and adjuvant temozolomide and radiation. The epigenetic silencing of the MGMT gene was determined using methylation-specific PCR. Results: Inactivation of the MGMT gene by promoter methylation was associated with longer survival ( P = 0.0051; Log-rank test). At 18 months, survival was 62% (16 of 26) for patients testing positive for a methylated MGMT promoter but reached only 8% (1 of 12) in absence of methylation ( P = 0.002; Fisher’s exact test). In the presence of other clinically relevant factors, methylation of the MGMT promoter remains the only significant predictor ( P = 0.017; Cox regression). Conclusions: This prospective clinical trial identifies MGMT -methylation status as an independent predictor for glioblastoma patients treated with a methylating agent. The association of the epigenetic inactivation of the DNA repair gene MGMT with better outcome in this homogenous cohort may have important implications for the design of future trials and supports efforts to deplete MGMT by O -6-benzylguanine, a noncytotoxic substrate of this enzyme.

770 citations