scispace - formally typeset
Search or ask a question
Author

Pierce V. Kavanagh

Bio: Pierce V. Kavanagh is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: Metabolite & Monoamine neurotransmitter. The author has an hindex of 23, co-authored 101 publications receiving 1926 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: SJW increased expression and enhanced the drug efflux function of the multi drug transporter P-glycoprotein in PBMCs of healthy volunteers and may represent a second mechanism for the drug-herb interactions seen in clinical practice and account for the discrepancies between in vitro and in vivo data.
Abstract: Aims St John's Wort (SJW) is widely used in the treatment of depression but concerns have been raised about its potential to interact with other drugs. Co-administration with SJW has resulted in significant reductions in trough plasma concentrations of indinavir and cyclosporin [1, 2]. Induction of cytochrome P450 3A4 (CYP3A4) has been implicated as the most likely interaction mechanism. However, the magnitude of the interaction seen in clinical practice is greater than that predicted by in vitro studies suggesting additional interaction mechanisms may exist. As indinavir and cyclosporin are substrates for both CYP3A4 and the multi drug transporter P-glycoprotein we hypothesized that modulation of P-glycoprotein expression and function by SJW may contribute to the development of potentially harmful drug–drug interactions.

271 citations

Journal ArticleDOI
TL;DR: In this article, the ring substituted methyl isomers of methcathinone, 2-, 3- and 4-methylmethcathyinone were analysed and the IR spectra for the three compounds can be used to distinguish between them.

72 citations

Journal ArticleDOI
01 Apr 2013
TL;DR: In this article, the phase I and II metabolites of 2-MPA were identified from rat and human urine samples by solid-phase extraction without or following enzymatic cleavage of conjugates.
Abstract: 2-Methiopropamine [1-(thiophen-2-yl)-2-methylaminopropane, 2-MPA], a thiophene analogue of methamphetamine, is available from online vendors selling "Research chemicals." The first samples were seized by the German police in 2011. As it is a recreational stimulant, its inclusion in routine drug screening protocols should be required. The aims of this study were to identify the phase I and II metabolites of 2-MPA in rat and human urine and to identify the human cytochrome-P450 (CYP) isoenzymes involved in its phase I metabolism. In addition, the detectability of 2-MPA in urine samples using the authors' well-established gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-linear ion trap-mass spectrometry (LC-MS(n)) screening protocols was also evaluated. The metabolites were isolated from rat and human urine samples by solid-Phase extraction without or following enzymatic cleavage of conjugates. The phase I metabolites, following acetylation, were separated and identified by GC-MS and/or liquid chromatography-high-resolution linear ion trap mass spectrometry (LC-HR-MS(n)) and the phase II metabolites by LC-HR-MS(n). The following Major metabolic pathways were proposed: N-demethylation, hydroxylation at the side chain and at the thiophene ring, and combination of these transformations followed by glucuronidation and/or sulfation. CYP1A2, CYP2C19, CYP2D6, and CYP3A4 were identified as the major phase I metabolizing enzymes. They were also involved in the N-demethylation of the analogue methamphetamine and CYP2C19, CYP2D6, and CYP3A4 in its ring hydroxylation. Following the administration of a typical user's dose, 2-MPA and its metabolites were identified in rat urine using the authors' GC-MS and the LC-MS(n) screening approaches. Ingestion of 2-MPA could also be detected by both protocols in an authentic human urine sample.

66 citations

Journal ArticleDOI
TL;DR: Following the administration of a typical user’s dose, 2-MPA and its metabolites were identified in rat urine using the authors’ GC-MS and the LC-MSn screening approaches and the following major metabolic pathways were proposed: N-demethylation, hydroxylation at the side chain and at the thiophene ring, and combination of these transformations followed by glucuronidation and/or sulfation.
Abstract: 2-Methiopropamine [1-(thiophen-2-yl)-2-methylaminopropane, 2-MPA], a thiophene analogue of methamphetamine, is available from online vendors selling “research chemicals.” The first samples were seized by the German police in 2011. As it is a recreational stimulant, its inclusion in routine drug screening protocols should be required. The aims of this study were to identify the phase I and II metabolites of 2-MPA in rat and human urine and to identify the human cytochrome-P450 (CYP) isoenzymes involved in its phase I metabolism. In addition, the detectability of 2-MPA in urine samples using the authors’ well-established gas chromatography–mass spectrometry (GC-MS) and liquid chromatography-linear ion trap-mass spectrometry (LC-MSn) screening protocols was also evaluated. The metabolites were isolated from rat and human urine samples by solid-phase extraction without or following enzymatic cleavage of conjugates. The phase I metabolites, following acetylation, were separated and identified by GC-MS and/or liquid chromatography–high-resolution linear ion trap mass spectrometry (LC-HR-MSn) and the phase II metabolites by LC-HR-MSn. The following major metabolic pathways were proposed: N-demethylation, hydroxylation at the side chain and at the thiophene ring, and combination of these transformations followed by glucuronidation and/or sulfation. CYP1A2, CYP2C19, CYP2D6, and CYP3A4 were identified as the major phase I metabolizing enzymes. They were also involved in the N-demethylation of the analogue methamphetamine and CYP2C19, CYP2D6, and CYP3A4 in its ring hydroxylation. Following the administration of a typical user’s dose, 2-MPA and its metabolites were identified in rat urine using the authors’ GC-MS and the LC-MSn screening approaches. Ingestion of 2-MPA could also be detected by both protocols in an authentic human urine sample.

64 citations

Journal ArticleDOI
TL;DR: The urinary metabolites of AB-001, a synthetic cannabimimetic identified in head shop products in Ireland in 2010, have been identified and found to be adamantane mono-hydroxylated and adamantane Mono-Hydroxylation/N-dealkylated products.
Abstract: 3-[(Adamantan-1-yl)carbonyl]-1-pentylindole (AB-001), a synthetic cannabimimetic, was identified in head shop products in Ireland in 2010. German authorities also reported it to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) via the Early Warning System (EWS) in 2011. As indole-derived cannabimimetics, such as JWH-018, JWH-073, and JWH-250, undergo extensive metabolism, it was expected that AB-001 would behave similarly. To include it in our toxicological screening protocols, we have identified its urinary metabolites in humans following oral administration. The major metabolites were found to be adamantane mono-hydroxylated and adamantane mono-hydroxylated/N-dealkylated products. No parent compound was found in urine, and metabolites were detectable for up to 160 h following administration.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Evidence on a recent methodological development assumed to provide a considerable advancement in the analysis of cortisol in hair is discussed, which holds great promise to significantly enhance current understanding on the role of steroid hormones in psychoimmunological research.
Abstract: Changes to long-term secretion of the glucocorticoid cortisol are considered to play a crucial role in mediating the link between chronic stress and the development of numerous immune system related diseases. However, obtaining valid assessments of long-term cortisol levels is difficult due to limitations of previous measurement strategies in blood, saliva or urine. This review discusses evidence on a recent methodological development assumed to provide a considerable advancement in this respect: the analysis of cortisol in hair. Being incorporated into the growing hair, hair cortisol concentrations (HCC) are assumed to provide a retrospective reflection of integrated cortisol secretion over periods of several months. Over the past years, supportive evidence has accumulated regarding several fundamental characteristics of HCC, including its validity as an index of long-term systemic cortisol levels, its reliability across repeated assessments and its relative robustness to a range of potential confounding influences. Based on this groundwork, research has now also commenced to utilise HCC for answering more specific questions regarding the role of long-term cortisol secretion in different stress and health-related conditions. The possibility of extending hair analysis to also capture long-term secretion of other steroid hormones (e.g., androgens or estrogens) provides a further intriguing prospect for future research. Given its unique characteristics, the use of hair analysis holds great promise to significantly enhance current understanding on the role of steroid hormones in psychoimmunological research.

620 citations

Journal ArticleDOI
01 Jan 2005-Drugs
TL;DR: An extensive review of the literature identified reported herb-drug interactions with clinical significance, although the underlying mechanisms for the altered drug effects and/or concentrations by concomitant herbal medicines are yet to be determined.
Abstract: Herbs are often administered in combination with therapeutic drugs, raising the potential of herb-drug interactions. An extensive review of the literature identified reported herb-drug interactions with clinical significance, many of which are from case reports and limited clinical observations. Cases have been published reporting enhanced anticoagulation and bleeding when patients on long-term warfarin therapy also took Salvia miltiorrhiza (danshen). Allium sativum (garlic) decreased the area under the plasma concentration-time curve (AUC) and maximum plasma concentration of saquinavir, but not ritonavir and paracetamol (acetaminophen), in volunteers. A. sativum increased the clotting time and international normalised ratio of warfarin and caused hypoglycaemia when taken with chlorpropamide. Ginkgo biloba (ginkgo) caused bleeding when combined with warfarin or aspirin (acetylsalicylic acid), raised blood pressure when combined with a thiazide diuretic and even caused coma when combined with trazodone in patients. Panax ginseng (ginseng) reduced the blood concentrations of alcohol (ethanol) and warfarin, and induced mania when used concomitantly with phenelzine, but ginseng increased the efficacy of influenza vaccination. Scutellaria baicalensis (huangqin) ameliorated irinotecan-induced gastrointestinal toxicity in cancer patients. Piper methysticum (kava) increased the ‘off’ periods in patients with parkinsonism taking levodopa and induced a semicomatose state when given concomitantly with alprazolam. Kava enhanced the hypnotic effect of alcohol in mice, but this was not observed in humans. Silybum marianum (milk thistle) decreased the trough concentrations of indinavir in humans. Piperine from black (Piper nigrum Linn) and long (P. longum Linn) peppers increased the AUC of phenytoin, propranolol and theophylline in healthy volunteers and plasma concentrations of rifamipicin (rifampin) in patients with pulmonary tuberculosis. Eleutheroccus senticosus (Siberian ginseng) increased the serum concentration of digoxin, but did not alter the pharmacokinetics of dextromethorphan and alprazolam in humans. Hypericum perforatum (hypericum; St John’s wort) decreased the blood concentrations of ciclosporin (cyclosporin), midazolam, tacrolimus, amitriptyline, digoxin, indinavir, warfarin, phenprocoumon and theophylline, but did not alter the pharmacokinetics of carbamazepine, pravastatin, mycophenolate mofetil and dextromethorphan. Cases have been reported where decreased ciclosporin concentrations led to organ rejection. Hypericum also caused breakthrough bleeding and unplanned pregnancies when used concomitantly with oral contraceptives. It also caused serotonin syndrome when used in combination with selective serotonin reuptake inhibitors (e.g. sertraline and paroxetine). In conclusion, interactions between herbal medicines and prescribed drugs can occur and may lead to serious clinical consequences. There are other theoretical interactions indicated by preclinical data. Both pharmacokinetic and/or pharmacodynamic mechanisms have been considered to play a role in these interactions, although the underlying mechanisms for the altered drug effects and/or concentrations by concomitant herbal medicines are yet to be determined. The clinical importance of herb-drug interactions depends on many factors associated with the particular herb, drug and patient. Herbs should be appropriately labeled to alert consumers to potential interactions when concomitantly used with drugs, and to recommend a consultation with their general practitioners and other medical carers.

557 citations

Journal ArticleDOI
TL;DR: A comprehensive review, based on a systematic electronic literature search, of SC epidemiology and pharmacology and their clinical implications is presented, showing in vitro and animal in vivo studies show SC pharmacological effects 2-100 times more potent than THC.

549 citations

Journal ArticleDOI
Shu-Feng Zhou1
TL;DR: Altered P-gp/MDR1 activity due to induction and/or inhibition can cause drug–drug interactions with altered drug pharmacokinetics and response, and is of great clinical importance in non-cancer-related drug therapy due to its wide-ranging effects on the absorption and excretion of a variety of drugs.
Abstract: 1. P-glycoprotein (P-gp/MDR1), one of the most clinically important transmembrane transporters in humans, is encoded by the ABCB1/MDR1 gene. Recent insights into the structural features of P-gp/MDR...

497 citations