scispace - formally typeset
Search or ask a question
Author

Pierluigi Bellutti

Other affiliations: Kessler Foundation
Bio: Pierluigi Bellutti is an academic researcher from fondazione bruno kessler. The author has contributed to research in topics: Silicon & Light-emitting diode. The author has an hindex of 26, co-authored 123 publications receiving 2292 citations. Previous affiliations of Pierluigi Bellutti include Kessler Foundation.


Papers
More filters
Journal ArticleDOI
Shuang-Nan Zhang1, Andrea Santangelo2, Andrea Santangelo1, Marco Feroci3  +150 moreInstitutions (21)
TL;DR: The enhanced X-ray Timing and Polarimetry mission—eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism and will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects.
Abstract: In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources. The paper provides a detailed description of: (1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload; (2) the elements and functions of the mission, from the spacecraft to the ground segment.

206 citations

Journal ArticleDOI
Lorenzo Amati1, P. T. O'Brien2, Diego Götz3, Enrico Bozzo4  +223 moreInstitutions (87)
TL;DR: Theseus as mentioned in this paper is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics.

194 citations

Proceedings ArticleDOI
Shuang-Nan Zhang, Marco Feroci1, Andrea Santangelo2, Yongwei Dong  +181 moreInstitutions (41)
TL;DR: eXTP as discussed by the authors is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism, which carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV.
Abstract: eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state of matter at supra-nuclear density, the measurement of QED effects in highly magnetized star, and the study of accretion in the strong-field regime of gravity. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0.5-30 keV (and beyond). Key elements of the payload are: the Spectroscopic Focusing Array (SFA) - a set of 11 X-ray optics for a total effective area of similar to 0.9 m(2) and 0.6 m(2) at 2 keV and 6 keV respectively, equipped with Silicon Drift Detectors offering < 180 eV spectral resolution; the Large Area Detector (LAD) - a deployable set of 640 Silicon Drift Detectors, for a total effective area of similar to 3.4 m(2), between 6 and 10 keV, and spectral resolution better than 250 eV; the Polarimetry Focusing Array (PFA) - a set of 2 X-ray telescope, for a total effective area of 250 cm(2) at 2 keV, equipped with imaging gas pixel photoelectric polarimeters; the Wide Field Monitor (WFM) - a set of 3 coded mask wide field units, equipped with position-sensitive Silicon Drift Detectors, each covering a 90 degrees x 90 degrees field of view. The eXTP international consortium includes major institutions of the Chinese Academy of Sciences and Universities in China, as well as major institutions in several European countries and the United States. The predecessor of eXTP, the XTP mission concept, has been selected and funded as one of the so-called background missions in the Strategic Priority Space Science Program of the Chinese Academy of Sciences since 2011. The strong European participation has significantly enhanced the scientific capabilities of eXTP. The planned launch date of the mission is earlier than 2025.

184 citations

Book ChapterDOI
01 Jan 1989
TL;DR: A CCD imager whose sampling structure is loosely modeled after the biological visual system is described, which has embedded in its structure a logarithmic transformation that makes it size and rotation invariant.
Abstract: A CCD imager whose sampling structure is loosely modeled after the biological visual system is described. Its architecture and advantages over conventional cameras for pattern recognition are discussed. The sensor has embedded in its structure a logarithmic transformation that makes it size and rotation invariant. Simulations on real images using the actual sensor geometry have been performed to study the sensor performance for 2D pattern recognition and object tracking.

134 citations

Journal ArticleDOI
TL;DR: In this article, three kinds of geometries (channel, rib, and strip-loaded) have been simulated, fabricated, and optically characterized in order to optimize waveguide performances.
Abstract: Low-pressure chemical-vapor deposition (LPCVD) thin-film Si/sub 3/N/sub 4/ waveguides have been fabricated on Si substrate within a complementary metal-oxide-semiconductor (CMOS) fabrication pilot line. Three kinds of geometries (channel, rib, and strip-loaded) have been simulated, fabricated, and optically characterized in order to optimize waveguide performances. The number and optical confinement factors of guided optical modes have been simulated, taking into account sidewall effects caused by the etching processes, which have been studied by scanning electron microscopy. Optical guided modes have been observed with a mode analyzer and compared with simulation expectations to confirm the process parameters. Propagation loss measurements at 780 and 632.8 nm have been performed by both using the cutback technique and measuring the drop of intensity of the top scattered light along the length of the waveguide. Loss coefficients of approximately 0.1 dB/cm have been obtained for channel waveguides. These data are very promising in view of the development of Si-integrated photonics.

120 citations


Cited by
More filters
Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations

01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

Book
01 Jan 2002
TL;DR: Cynthia Breazeal presents her vision of the sociable robot of the future, a synthetic creature and not merely a sophisticated tool, and defines the key components of social intelligence for these machines and offers a framework and set of design issues for their realization.
Abstract: From the Publisher: Cynthia Breazeal here presents her vision of the sociable robot of the future, a synthetic creature and not merely a sophisticated tool. A sociable robot will be able to understand us, to communicate and interact with us, to learn from us and grow with us. It will be socially intelligent in a humanlike way. Eventually sociable robots will assist us in our daily lives, as collaborators and companions. Because the most successful sociable robots will share our social characteristics, the effort to make sociable robots is also a means for exploring human social intelligence and even what it means to be human. Breazeal defines the key components of social intelligence for these machines and offers a framework and set of design issues for their realization. Much of the book focuses on a nascent sociable robot she designed named Kismet. Breazeal offers a concrete implementation for Kismet, incorporating insights from the scientific study of animals and people, as well as from artistic disciplines such as classical animation. This blending of science, engineering, and art creates a lifelike quality that encourages people to treat Kismet as a social creature rather than just a machine. The book includes a CD-ROM that shows Kismet in action.

1,500 citations