scispace - formally typeset
Search or ask a question
Author

Pierluigi Poggiolini

Bio: Pierluigi Poggiolini is an academic researcher from Polytechnic University of Turin. The author has contributed to research in topics: Wavelength-division multiplexing & Network packet. The author has an hindex of 43, co-authored 243 publications receiving 7667 citations. Previous affiliations of Pierluigi Poggiolini include Cisco Systems, Inc. & Stanford University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper is devoted to an in-depth discussion of the Gaussian Noise model which describes non-linear propagation in uncompensated coherent transmission systems and its implications as to system and networks design and optimization are discussed.
Abstract: This paper is devoted to an in-depth discussion of the Gaussian Noise (GN) model which describes non-linear propagation in uncompensated coherent transmission systems. Similar models and validation efforts are reviewed. Then, the main equations of the GN model are introduced. An intuitive physical interpretation of the equations and their features is proposed. The main characteristics of the non-linear interference (NLI) noise spectra that the GN model produces are discussed. To ease model exploitation, a new formulation in hyperbolic coordinates is proposed, which makes numerical integration faster. New approximate closed-form solutions are also provided. An extension of the GN model to distributed-amplification scenarios is introduced. NLI noise accumulation versus distance and bandwidth are studied in depth. Finally, the GN model implications as to system and networks design and optimization are discussed.

690 citations

Journal ArticleDOI
TL;DR: This paper tries to gather the recent results regarding the Gaussian-noise model definition, understanding, relations versus other models, validation, limitations, closed form solutions, approximations and, in general, its applications and implications in link analysis and optimization, also within a network environment.
Abstract: Several approximate non-linear fiber propagation models have been proposed over the years. Recent re-consideration and extension of earlier modeling efforts has led to the formalization of the so-called Gaussian-noise (GN) model. The evidence collected so far hints at the GN-model as being a relatively simple and, at the same time, sufficiently reliable tool for performance prediction of uncompensated coherent systems, characterized by a favorable accuracy versus complexity trade-off. This paper tries to gather the recent results regarding the GN-model definition, understanding, relations versus other models, validation, limitations, closed form solutions, approximations and, in general, its applications and implications in link analysis and optimization, also within a network environment.

618 citations

Journal ArticleDOI
TL;DR: In this article, the performance of Nyquist-WDM Terabit superchannels implemented using polarization-multiplexed phase shift-keying based on 2 (PM-BPSK) and 4 (PM)-QPSK signal points was investigated through simulations.
Abstract: We investigated through simulations the performance of Nyquist-WDM Terabit superchannels implemented using polarization-multiplexed phase shift-keying based on 2 (PM-BPSK) and 4 (PM-QPSK) signal points or polarization-multiplexed quadrature amplitude modulation based on 8 (PM-8QAM) and 16 (PM-16QAM) signal points. Terabit superchannels are obtained through the aggregation of multiple subcarriers using the Nyquist-WDM technique, based on a tight spectral shaping of each subcarrier which allows very narrow spacing. We first studied the optimum transmitter/receiver filtering in a back-to-back configuration. Then we investigated the maximum reach for different spectral efficiencies, after nonlinear propagation over uncompensated links with lumped amplification. Performance for systems based on both standard single-mode fiber (SSMF) and large effective area non-zero dispersion-shifted fiber (NZDSF) has been analyzed. Assuming SSMF with 25-dB span loss, we found that PM-BPSK can reach 6480 km at a net capacity of 4 Tb/s across the C band. Conversely, PM-16QAM can deliver 27 Tb/s, but over 270 km only. Note that a lower span length, the use of Raman amplification and/or pure silica-core fibers (PSCFs) can significantly increase the maximum reach, but without changing the hierarchy among the performance of modulation formats. We also show that the maximum reachable distance is approximately 2/3 of the one achievable in linear propagation at the optimum launch power, regardless of the modulation format, spacing and fiber type. As additional results, we also verified that the optimum launch power per subcarrier linearly depends on the span loss, varies with the fiber type, but it is independent of the modulation format, and that the relationship between the maximum reachable distance and the span loss is almost linear.

545 citations

Journal ArticleDOI
TL;DR: In this paper, perturbative models for the impact of nonlinear propagation in uncompensated links were proposed and analyzed for a set of formats including PM-BPSK, PM-QPSK and PM-8QAM.
Abstract: We address perturbative models for the impact of nonlinear propagation in uncompensated links. We concentrate on a recently-proposed model which splits up the signal into spectral components and then resorts to a four-wave-mixing-like approach to assess the generation of nonlinear interference due to the beating of the signal spectral components. We put its founding assumptions on firmer ground and we provide a detailed derivation for its main analytical results. We then carry out an extensive simulative validation by addressing an ample and significant set of formats encompassing PM-BPSK, PM-QPSK, PM-8QAM, and PM-16QAM, all operating at 32 GBaud. We compare the model prediction of maximum system reach and optimum launch power versus simulation results, for all four formats, three different kinds of fibers (PSCF, SMF, and NZDSF) and for several values of WDM channel spacing, ranging from 50 GHz down to the symbol-rate. We found that, throughout all tests, the model delivers accurate predictions, potentially making it an effective general-purpose system design tool for coherent uncompensated transmission systems.

417 citations

Journal ArticleDOI
TL;DR: This paper analyzes in detail the GN-model errors and derives a complete set of formulas accounting for all single, cross, and multi-channel effects that constitute the enhanced GN- model (EGN-model), which is found to be very good when assessing detailed span-by-span NLI accumulation and excellent when estimating realistic system maximum reach.
Abstract: The GN-model has been proposed as an approximate but sufficiently accurate tool for predicting uncompensated optical coherent transmission system performance, in realistic scenarios. For this specific use, the GN-model has enjoyed substantial validation, both simulative and experimental. Recently, however, it has been pointed out that its predictions, when used to obtain a detailed picture of non-linear interference (NLI) noise accumulation along a link, may be affected by a substantial NLI overestimation error, especially in the first spans of the link. In this paper we analyze in detail the GN-model errors. We discuss recently proposed formulas for correcting such errors and show that they neglect several contributions to NLI, so that they may substantially underestimate NLI in specific situations, especially over low-dispersion fibers. We derive a complete set of formulas accounting for all single, cross, and multi-channel effects, This set constitutes what we have called the enhanced GN-model (EGN-model). We extensively validate the EGN model by comparison with accurate simulations in several different system scenarios. The overall EGN model accuracy is found to be very good when assessing detailed span-by-span NLI accumulation and excellent when estimating realistic system maximum reach. The computational complexity vs. accuracy trade-offs of the various versions of the GN and EGN models are extensively discussed.

414 citations


Cited by
More filters
Journal Article
TL;DR: The general concept of OBS protocols and in particular, those based on Just-Enough-Time (JET), is described, along with the applicability ofOBS protocols to IP over WDM, and the performance of JET-based OBS Protocols is evaluated.
Abstract: To support bursty traffic on the Internet (and especially WWW) efficiently, optical burst switching (OBS) is proposed as a way to streamline both protocols and hardware in building the future generation Optical Internet. By leveraging the attractive properties of optical communications and at the same time, taking into account its limitations, OBS combines the best of optical circuit-switching and packet/cell switching. In this paper, the general concept of OBS protocols and in particular, those based on Just-Enough-Time (JET), is described, along with the applicability of OBS protocols to IP over WDM. Specific issues such as the use of fiber delay-lines (FDLs) for accommodating processing delay and/or resolving conflicts are also discussed. In addition, the performance of JET-based OBS protocols which use an offset time along with delayed reservation to achieve efficient utilization of both bandwidth and FDLs as well as to support priority-based routing is evaluated.

1,997 citations

Journal ArticleDOI
10 Jan 2005
TL;DR: Differential-phase-shift keying has recently been used to reach record distances in long-haul lightwave communication systems and theoretical as well as implementation aspects of DPSK are reviewed.
Abstract: Differential-phase-shift keying (DPSK) has recently been used to reach record distances in long-haul lightwave communication systems. This paper will review theoretical, as well as implementation, aspects of DPSK, and discuss experimental results.

949 citations

Journal ArticleDOI
TL;DR: This work reviews detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method, and compares modulation methods encoding information in various degrees of freedom (DOF).
Abstract: The drive for higher performance in optical fiber systems has renewed interest in coherent detection. We review detection methods, including noncoherent, differentially coherent, and coherent detection, as well as a hybrid method. We compare modulation methods encoding information in various degrees of freedom (DOF). Polarization-multiplexed quadrature-amplitude modulation maximizes spectral efficiency and power efficiency, by utilizing all four available DOF, the two field quadratures in the two polarizations. Dual-polarization homodyne or heterodyne downconversion are linear processes that can fully recover the received signal field in these four DOF. When downconverted signals are sampled at the Nyquist rate, compensation of transmission impairments can be performed using digital signal processing (DSP). Linear impairments, including chromatic dispersion and polarization-mode dispersion, can be compensated quasi-exactly using finite impulse response filters. Some nonlinear impairments, such as intra-channel four-wave mixing and nonlinear phase noise, can be compensated partially. Carrier phase recovery can be performed using feedforward methods, even when phase-locked loops may fail due to delay constraints. DSP-based compensation enables a receiver to adapt to time-varying impairments, and facilitates use of advanced forward-error-correction codes. We discuss both single- and multi-carrier system implementations. For a given modulation format, using coherent detection, they offer fundamentally the same spectral efficiency and power efficiency, but may differ in practice, because of different impairments and implementation details. With anticipated advances in analog-to-digital converters and integrated circuit technology, DSP-based coherent receivers at bit rates up to 100 Gbit/s should become practical within the next few years.

907 citations

Journal ArticleDOI
05 Jun 2006
TL;DR: This paper discusses the generation and detection of multigigabit/s intensity- and phase-modulated formats, and highlights their resilience to key impairments found in optical networking, such as optical amplifier noise, multipath interference, chromatic dispersion, polarization-mode dispersion.
Abstract: Fiber-optic communication systems form the high-capacity transport infrastructure that enables global broadband data services and advanced Internet applications. The desire for higher per-fiber transport capacities and, at the same time, the drive for lower costs per end-to-end transmitted information bit has led to optically routed networks with high spectral efficiencies. Among other enabling technologies, advanced optical modulation formats have become key to the design of modern wavelength division multiplexed (WDM) fiber systems. In this paper, we review optical modulation formats in the broader context of optically routed WDM networks. We discuss the generation and detection of multigigabit/s intensity- and phase-modulated formats, and highlight their resilience to key impairments found in optical networking, such as optical amplifier noise, multipath interference, chromatic dispersion, polarization-mode dispersion, WDM crosstalk, concatenated optical filtering, and fiber nonlinearity

772 citations

Journal ArticleDOI
TL;DR: In this article, a theoretical analysis of the dual-polarization constant modulus algorithm is presented, where the control surfaces several different equalizer algorithms are derived, including the decision-directed, trained, and the radially directed equalizer for both polarization division multiplexed quadriphase shift keyed (PDM-QPSK) and 16 level quadrature amplitude modulation (PDm-16-QAM).
Abstract: Digital coherent receivers have caused a revolution in the design of optical transmission systems, due to the subsystems and algorithms embedded within such a receiver. After giving a high-level overview of the subsystems, the optical front end, the analog-to-digital converter (ADC) and the digital signal processing (DSP) algorithms, which relax the tolerances on these subsystems are discussed. Attention is then turned to the compensation of transmission impairments, both static and dynamic. The discussion of dynamic-channel equalization, which forms a significant part of the paper, includes a theoretical analysis of the dual-polarization constant modulus algorithm, where the control surfaces several different equalizer algorithms are derived, including the constant modulus, decision-directed, trained, and the radially directed equalizer for both polarization division multiplexed quadriphase shift keyed (PDM-QPSK) and 16 level quadrature amplitude modulation (PDM-16-QAM). Synchronization algorithms employed to recover the timing and carrier phase information are then examined, after which the data may be recovered. The paper concludes with a discussion of the challenges for future coherent optical transmission systems.

772 citations