scispace - formally typeset
Search or ask a question
Author

Pierre-Elie Crouzet

Bio: Pierre-Elie Crouzet is an academic researcher from European Space Agency. The author has contributed to research in topics: Cosmic Vision & Exoplanet. The author has an hindex of 9, co-authored 19 publications receiving 382 citations.

Papers
More filters
Journal ArticleDOI
Giovanna Tinetti1, Pierre Drossart, Paul Eccleston2, Paul Hartogh3  +240 moreInstitutions (45)
TL;DR: The ARIEL mission as mentioned in this paper was designed to observe a large number of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical.
Abstract: Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

298 citations

Journal ArticleDOI
TL;DR: The Atmospheric Remote sensing Infrared Exoplanet Large Survey (ARIEL) is one of the three M-class mission candidates competing for the M4 launch slot within the Cosmic Vision science program of the European Space Agency (ESA).
Abstract: ARIEL, the Atmospheric Remote sensing Infrared Exoplanet Large survey, is one of the three M-class mission candidates competing for the M4 launch slot within the Cosmic Vision science programme of the European Space Agency (ESA). As such, ARIEL has been the subject of a Phase A study that involved European industry, research institutes and universities from ESA member states. This study is now completed and the M4 down-selection is expected to be concluded in November 2017. ARIEL is a concept for a dedicated mission to measure the chemical composition and structure of hundreds of exoplanet atmospheres using the technique of transit spectroscopy. ARIEL targets extend from gas giants (Jupiter or Neptune-like) to super-Earths in the very hot to warm zones of F to M-type host stars, opening up the way to large-scale, comparative planetology that would place our own Solar System in the context of other planetary systems in the Milky Way. A technical and programmatic review of the ARIEL mission was performed between February and May 2017, with the objective of assessing the readiness of the mission to progress to the Phase B1 study. No critical issues were identified and the mission was deemed technically feasible within the M4 programmatic boundary conditions. In this paper we give an overview of the final mission concept for ARIEL as of the end of the Phase A study, from scientific, technical and operational perspectives.

34 citations

Journal ArticleDOI
TL;DR: The Exoplanet Characterisation Observatory (EChO) has been one of the five M-class mission candidates competing for the M3 launch slot within the science programme Cosmic Vision 2015-2025 of the European Space Agency (ESA) as discussed by the authors.
Abstract: EChO, the Exoplanet Characterisation Observatory, has been one of the five M-class mission candidates competing for the M3 launch slot within the science programme Cosmic Vision 2015–2025 of the European Space Agency (ESA). As such, EChO has been the subject of a Phase 0/A study that involved European Industry, research institutes and universities from ESA member states and that concluded in September 2013. EChO is a concept for a dedicated mission to measure the chemical composition and structure of hundreds of exoplanet atmospheres using the technique of transit spectroscopy. With simultaneous and uninterrupted spectral coverage from the visible to infrared wavelengths, EChO targets extend from gas giants (Jupiter or Neptune-like) to super-Earths in the very hot to temperate zones of F to M-type host stars, opening up the way to large-scale, comparative planetology that would place our own solar system in the context of other planetary systems in the Milky Way. A review of the performance requirements of the EChO mission was held at ESA at the end of 2013, with the objective of assessing the readiness of the mission to progress to the Phase B1 study phase. No critical issues were identified from a technical perspective, however a number of recommendations were made for future work. Since the mission was not selected for the M3 launch slot, EChO is no longer under study at ESA. In this paper we give an overview of the final mission concept for EChO as of the end of the study, from scientific, technical and operational perspectives.

27 citations

Proceedings ArticleDOI
TL;DR: The Atmospheric Remote sensing Infrared Exoplanet Large Survey (ARIEL) mission as mentioned in this paper is an M-class mission candidate within the science program Cosmic Vision of the European Space Agency (ESA).
Abstract: The Atmospheric Remote sensing Infrared Exoplanet Large survey (ARIEL) mission is an M-class mission candidate within the science program Cosmic Vision of the European Space Agency (ESA). It was selected in June 2015 as one of three candidates to enter an assessment phase (phase 0/A). This process involves the definition of science and mission requirements as well as a preliminary model payload, and an internal Concurrent Design Facility (CDF) study providing the input to parallel industrial studies (in progress since 2016). After this process, the three candidates will be reviewed and in mid-2017 one of them will be selected as the M4 mission for launch in 2026. ARIEL is a survey-type mission dedicated to the characterisation of exoplanetary atmospheres. Using the differential technique of transit spectroscopy, ARIEL will obtain transmission and/or emission spectra of the atmospheres of a large and diverse sample of known exoplanets (~500) covering a wide range of masses, densities, equilibrium temperatures, orbital properties and host-star characteristics. This will include hot Jupiters to warm Super-Earths, orbiting M5 to F0 stars. This paper describes critical requirements, and reports on the results of the Concurrent Design Facility (CDF) study that was conducted in June / July 2015, providing a description of the resulting spacecraft design. It will employ a 0.7 m x 1.1 m off-axis three mirror telescope, feeding four photometric channels in the VNIR range (0.5-1.95 μm) and an IR spectrometer covering 1.95-7.8 μm.

25 citations

Proceedings ArticleDOI
TL;DR: The EChO mission is an M-class mission candidate within the science program Cosmic Vision 2015-2025 of the European Space======Agency as discussed by the authors, and two parallel competitive industrial studies of the complete mission will end early 2013.
Abstract: EChO is an M-class mission candidate within the science program Cosmic Vision 2015-2025 of the European Space Agency. It was selected in February 2011 to enter an assessment phase (phase 0/A). Following the internal Concurrent Design Facility study conducted by ESA in June/July 2011, a call for instrument studies was released in September, resulting in two consortia being selected to study the complete science instrument on board EChO throughout 2012. Similarly, two parallel competitive industrial studies of the complete mission will end early 2013. The instrument study focuses on the design and accommodation in the spacecraft of the scientific instrument, a spectrometer divided into several channels covering the 0.55 to 11 micron (0.4 to 16 micron goal) wave band. It also includes the design of the active cryogenic chain required to operate the instrument focal plane detectors. The industrial study focuses on the complete system-level design, including the mission analysis and operations, the spacecraft design (both service and payload modules) and also programmatic aspects such as risk mitigation, schedule and cost analyses. This paper describes the status of the EChO assessment study at the mid-term review (June/July 2012). It includes a short introduction to the EChO mission, a brief update on recent work by the Science Study Team (SST) to refine the science requirements, the description of the telescope trade-off and baseline selection, as well as the status of both instrument consortia and industrial system-level studies.

14 citations


Cited by
More filters
01 Sep 1998
TL;DR: A stellar spectral flux library of wide spectral coverage and an example of its application are presented in this paper, which consists of 131 flux-calibrated spectra, encompassing all normal spectral types and luminosity classes at solar abundance, and metal-weak and metalrich F-K dwarf and G-K giant components.
Abstract: A stellar spectral flux library of wide spectral coverage and an example of its application are presented. The new library consists of 131 flux-calibrated spectra, encompassing all normal spectral types and luminosity classes at solar abundance, and metal-weak and metal-rich F-K dwarf and G-K giant components. Each library spectrum was formed by combining data from several sources overlapping in wavelength coverage. The SIMBAD database, measured colors, and line strengths were used to check that each input component has closely similar stellar type. The library has complete spectral coverage from 1150 to 10620 Afor all components and to 25000 Afor about half of them, mainly later types of solar abundance. Missing spectral coverage in the infrared currently consists of a smooth energy distribution formed from standard colors for the relevant types. The library is designed to permit inclusion of additional digital spectra, particularly of non-solar abundance stars in the infrared, as they become available. The library spectra are each given as Fl versus l, from 1150 to 25000 Ain steps of 5 A ˚. A program to combine the library spectra in the ratios appropriate to a selected isochrone is described and an example of a spectral component signature of a composite population of solar age and metallicity is illustrated. The library spectra and associated tables are available as text files by remote electronic access.

999 citations

Journal ArticleDOI
TL;DR: The HITRAN database is a compilation of molecular spectroscopic parameters as discussed by the authors , which is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres).
Abstract: The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition.

393 citations

Journal ArticleDOI
Giovanna Tinetti1, Pierre Drossart, Paul Eccleston2, Paul Hartogh3  +240 moreInstitutions (45)
TL;DR: The ARIEL mission as mentioned in this paper was designed to observe a large number of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical.
Abstract: Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

298 citations

01 Dec 2015
TL;DR: Observations of a white dwarf being transited by at least one, and probably several, disintegrating planetesimals are reported, providing further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.
Abstract: Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf—WD 1145+017—being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star’s brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star’s spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.

221 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection of a spectroscopic signature of water in the atmosphere of K2-18 b, a planet of eight Earth masses in the habitable zone of an M dwarf.
Abstract: In the past decade, observations from space and the ground have found water to be the most abundant molecular species, after hydrogen, in the atmospheres of hot, gaseous extrasolar planets1–5. Being the main molecular carrier of oxygen, water is a tracer of the origin and the evolution mechanisms of planets. For temperate, terrestrial planets, the presence of water is of great importance as an indicator of habitable conditions. Being small and relatively cold, these planets and their atmospheres are the most challenging to observe, and therefore no atmospheric spectral signatures have so far been detected6. Super-Earths—planets lighter than ten Earth masses—around later-type stars may provide our first opportunity to study spectroscopically the characteristics of such planets, as they are best suited for transit observations. Here, we report the detection of a spectroscopic signature of water in the atmosphere of K2-18 b—a planet of eight Earth masses in the habitable zone of an M dwarf7—with high statistical confidence (Atmospheric Detectability Index5 = 5.0, ~3.6σ (refs. 8,9)). In addition, the derived mean molecular weight suggests an atmosphere still containing some hydrogen. The observations were recorded with the Hubble Space Telescope/Wide Field Camera 3 and analysed with our dedicated, publicly available, algorithms5,9. Although the suitability of M dwarfs to host habitable worlds is still under discussion10–13, K2-18 b offers an unprecedented opportunity to gain insight into the composition and climate of habitable-zone planets. K2-18 b is a planet with a mass around eight times that of the Earth that lies within the standard habitable zone of its star. Hubble spectra show the presence of an atmosphere around K2-18 b containing significant amounts of water vapour (up to a few tens of per cent, depending on the spectral model), but also a non-negligible amount of H2–He.

153 citations